Collection and Use of Cancer Family History in Primary Care

Prepared for:
Agency for Healthcare Research and Quality
U.S. Department of Health and Human Services
540 Gaither Road
Rockville, MD 20850
www.ahrq.gov

Contract No. 290-02-0020

Prepared by:
McMaster University Evidence-based Practice Center, Hamilton, ON

Task Order Leaders:
Nadeem Qureshi, M.B.B.S., D.M.
Brenda Wilson, M.B., Ch.B., M.Sc, M.R.C.P.(U.K.), F.F.P.H.

Authors:
Nadeem Qureshi, M.B.B.S., D.M.
Brenda Wilson, M.B., Ch.B., M.Sc., M.R.C.P.(U.K.), F.F.P.H.
Pasqualina Santaguida, B.Sc., P.T., Ph.D.
June Carroll, M.D., C.C.F.P., F.C.F.P.
Carolina Ruiz Culebro, M.D.
Melissa Brouwers, Ph.D.
Parminder Raina, Ph.D.

AHRQ Publication No. 08-E001
October 2007
This report is based on research conducted by the McMaster University Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-02-0020). The findings and conclusions in this document are those of the author(s), who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help clinicians, employers, policymakers, and others make informed decisions about the provision of health care services. This report is intended as a reference and not as a substitute for clinical judgment.

This report may be used, in whole or in part, as the basis for the development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.
This document is in the public domain and may be used and reprinted without permission except those copyrighted materials noted for which further reproduction is prohibited without the specific permission of copyright holders.

Suggested Citation:

None of the investigators has any affiliations or financial involvement that conflicts with the material presented in this report.
Preface

The Agency for Healthcare Research and Quality (AHRQ), through its Evidence-Based Practice Centers (EPCs), sponsors the development of evidence reports and technology assessments to assist public- and private-sector organizations in their efforts to improve the quality of health care in the United States. The Centers for Disease Control and Prevention (CDC) requested and provided funding for this report. The reports and assessments provide organizations with comprehensive, science-based information on common, costly medical conditions and new health care technologies. The EPCs systematically review the relevant scientific literature on topics assigned to them by AHRQ and conduct additional analyses when appropriate prior to developing their reports and assessments.

To bring the broadest range of experts into the development of evidence reports and health technology assessments, AHRQ encourages the EPCs to form partnerships and enter into collaborations with other medical and research organizations. The EPCs work with these partner organizations to ensure that the evidence reports and technology assessments they produce will become building blocks for health care quality improvement projects throughout the Nation. The reports undergo peer review prior to their release.

AHRQ expects that the EPC evidence reports and technology assessments will inform individual health plans, providers, and purchasers as well as the health care system as a whole by providing important information to help improve health care quality.

We welcome comments on this evidence report. They may be sent by mail to the Task Order Officer named below at: Agency for Healthcare Research and Quality, 540 Gaither Road, Rockville, MD 20850, or by e-mail to epc@ahrq.gov.

Carolyn M. Clancy, M.D.
Director
Agency for Healthcare Research and Quality

Beth A. Collins Sharp, R.N., Ph.D.
Director, EPC Program
Agency for Healthcare Research and Quality

Julie Louise Gerberding, M.D., M.P.H.
Director
Centers for Disease Control and Prevention

Jean Slutsky, P.A., M.S.P.H.
Director, Center for Outcomes and Evidence
Agency for Healthcare Research and Quality

Gurvaneet Randhawa, M.D., M.P.H.
EPC Program Task Order Officer
Agency for Healthcare Research and Quality
Acknowledgments

We are grateful to our Task Order Officer, Gurvaneet Randhawa, and members of the Technical Expert Panel who were instrumental in developing the questions and defining the scope of this review: Ralph J. Coates, Paula W. Yoon, Dejana Braithwaite, Gareth Evans, Caryl J. Heaton, Lisa Madlensky, Harvey J. Murff, and Suzanne O’Neill.

We would like to thank the following people who helped with the data abstraction for this review: Connie Freeborn, Nofisa Ismaila, Jennifer Merriam, and Paula Robinson. We would like to thank Mark Oremus for his comments on the report.

Our editorial and review staff, Fulvia Baldassarre, Lynda Booker, Roxanne Cheeseman, Mary Gauld, Maureen Rice, Cecile Royer, and Sarah Smith have provided invaluable input into this document.
Structured Abstract

Objectives: This systematic review was undertaken to: (1) evaluate the accuracy of patient reporting of cancer family history, (2) identify and evaluate tools designed to capture cancer family history that are applicable to the primary care setting, and (3) identify and evaluate risk assessment tools (RATs) in promoting appropriate management of familial cancer risk in primary care settings.

Data Sources: MEDLINE®, EMBASE®, CINAHL® and Cochrane Central® from 1990 to July 2007.

Review Methods: Standard systematic review methodology was employed. Eligibility criteria included English studies evaluating breast, colorectal, ovarian, or prostate cancers. All primary study designs were included. For family history tools (FHxTs) and RATs, studies were limited to those applicable to primary care settings. RATs were excluded if they calculated the risk of mutation only, required specialist genetics knowledge, or were stand-alone guidelines.

Results: Reporting Accuracy: Of 19 eligible studies, 16 evaluated the accuracy of reporting family history and three on reliability. Reporting accuracy was better for relatives free of cancer (specificity) than those with cancer (sensitivity). Accuracy was better for breast and colorectal than for ovarian and prostate cancers.

Family History Tools: Of 40 eligible studies, 18 FHxTs were applicable to primary care. Most collected information on more than one cancer, employed self-administered questionnaires, and favored paper-based formats to collate family information. Details collected were often focused on specific conditions and affected relatives. Eleven tools were evaluated relative to current practice and seven were not. Irrespective of study design, compared to best current practice (genetic interviews) and standard primary care practice (family history in medical records) the FHxTs performed well.

Risk Assessment Tools: Of 15 eligible studies, three RATs were identified for patient use and eight for use by professionals. They were presented in a range of computer-based and paper-based formats, and preliminary evidence indicated potential efficacy, but not definitive effectiveness in practice.

Conclusions: Although limited in generalizability, informants reporting their cancer family history have greater accuracy for relatives free of cancer than those with cancer. Reporting accuracy may vary among different cancer types.

FHxTs varied in the extent of family enquiry depending on the tool’s purpose. These tools were primarily developed as an integral part of risk assessment. The few tools that were evaluated performed well against both best and standard clinical practice.

A number of RATs designed for primary care settings exist, but evidence is lacking of their effectiveness in promoting recommended clinical actions.
Contents

Executive Summary.. 1

Evidence Report .. 7

Chapter 1. Introduction .. 9
 Importance of Family History Collection for Cancer Risk Evaluation 9
 Primary Care Physicians and Cancer Risk Assessment and Management 9
 Accuracy of Family History Reporting... 10
 Collection of Family History in Primary Care.. 10
 Risk Assessment in Primary Care... 11
 The ACCE Framework ... 11
 Scope and Purpose of the Systematic Review .. 13

Chapter 2. Methods.. 15
 Analytic Framework ... 15
 Accuracy of Family History Reporting... 16
 Family History Collection Tools .. 17
 Risk Assessment Tools ... 17
 Topic Refinement.. 19
 Methods ... 20
 Search Strategy ... 20
 Eligibility Criteria ... 20
 Study Selection ... 22
 Data Extraction ... 22
 Summarizing Our Findings: Descriptive and Analytic Approaches................................... 23
 Peer Review Process... 23

Chapter 3. Results .. 25
 Question 1: What is the Evidence That Patients or Members of the Public Accurately
 Know and Report Their Family History? ... 26
 General Approach ... 26
 Studies Reviewed .. 26
 Quality Assessment of Studies.. 46
 Question 2: Improvement of Family History Collection by Primary Care Professionals
 Through the use of Forms and Tools .. 52
 Studies Reviewed .. 52
 Description of Tools ... 53
 Evaluating the Family History Tools .. 57
 Validity and Reliability ... 57
 Outcomes .. 58
 Quality Assessment of Studies.. 60
 Research Q3: Risk Assessment Tools... 61
Appendixes

Appendix A: Exact Search Strings and Web Sites Searched
Appendix B: Forms/Guides and Internet Family History Tools
Appendix C: Evidence Tables
Appendix D: List of Excluded Studies
Appendix E: Technical Expert Panel and Peer Reviewers

Executive Summary

Introduction

The systematic collection and assessment of family history information is a potentially valuable tool in preventive medicine, and is crucial in the identification of genetic risk. In some situations, family history information alone can form the basis for offering patients appropriately tailored preventive interventions. In addition, the clinical predictive value of even the most accurate DNA test is strongly influenced by prior probability—such as a positive family history. Family history is an important risk factor for many of the more common cancers.

Primary care providers (PCPs) have always used family history information as a core tool for their practice. However, the increasing emphasis on identifying and managing genetic susceptibility, and the question of what might now be considered an “adequate” family history for this purpose, presents real challenges for PCPs. There is no single agreed upon approach to guide PCPs in taking a genetic family history within office consultations (which are often brief). In practical terms, the systematic collection of family history as it pertains to cancer history is linked with the interpretation of that information which in turn is linked to whether PCPs take appropriate clinical action on the basis of the information collected.

The aim of this review is to provide a partial contribution to the evidence base underlying analytic validity (the ability of a tool to capture accurate family history data) and clinical validity (the ability of a tool to correctly assess or predict disease risk) of tools for capturing and interpreting family history.

Scope and Purposes of the Systematic Review

This systematic review addresses three research questions relating to the clinical utility of ascertaining family history as follows:

1. What is the evidence that patients or members of the public accurately know and report their family history of each one of, or a combination of, the following cancers: breast, ovarian, prostate, and colorectal?

2. How well do the different systematic family history collection forms and tools, such as take home tools, web based tools, etc., improve non-systematic approaches to family history collection by PCPs?
 a. Identify tools intended to improve family history collection by PCPs.
 b. Compare these tools against current practice.

3. What tools exist to enable PCPs to calculate, interpret, and act upon family history based risk information, and how well do these tools perform? For each cancer of interest,
 a. Identify tools designed to facilitate calculation and/or interpretation of family history based risk information, with the purpose of promoting recommended clinical actions.
 b. Assess the evidence for effectiveness of these tools in facilitating calculating and/or interpretation of family history based information.
c. Assess the evidence for effectiveness of these tools in promoting recommended clinical actions.

d. For each tool, identify the evidence base for each recommendation.

Methods

Standard systematic review methodology was employed. MEDLINE®, EMBASE®, CINAHL® and Cochrane Central® from 1990 to July 2007 were searched for primary studies. Eligibility criteria included English-only studies evaluating breast, colorectal, ovarian, or prostate cancers in adults. All primary study designs were included and reviews excluded. For family history tools (FHxTs) and risk assessment tools (RATs) studies were limited to those applicable to primary care settings. Primary care practitioners included family physicians/general practitioners, general internists, obstetricians, gynecologists (obstetrics and gynecology practitioners are PCPs for some women), nurses, nurse practitioners, physician assistants, nutritionists, and behavior counselors. All studies that described or evaluated a tool or standardized method to systematically capture/collate information related to family history for the relevant cancers or history of illness in other family members by any method whether self-report or collected by a professional were eligible. FHxTs were eligible if developed specifically for primary care or developed in other settings but also applicable to primary care. RATs were excluded if they calculated the risk of mutation only or required specialist genetics knowledge.

Results

A total of 15,390 unique citations were identified in the search for all three research questions combined. During two levels of title and abstract screening, 14,840 articles were excluded. A total of 338 citations proceeded to full text screening. From these, a total of 56 studies were eligible for the three research questions.

Question 1: Accuracy of Family History Reporting

A total of 19 unique studies (20 publications) evaluated the accuracy of reporting family history. From these, 16 studies evaluated accuracy by attempting to verify the cancer status of relatives (i.e., accuracy compared with a gold standard), and three evaluated the repeatability or reliability of the informant’s knowledge of family history rather than the true status of the relatives (i.e., no external gold standard). For the purposes of this review we use the terms “affected” and “unaffected” to refer to those relatives who have had cancer, and those who have not, respectively.

All but three of the 19 studies recruited participants who had cancer; two studies involved individuals at high risk for colorectal7 or breast cancer,8 and one involved women undergoing mammography.9 There were four case control studies (five publications),10-14 with controls derived from the general population matched for age,10,11 spouses of the informants or regional general practice lists,14 and from a linkage with license registration and health care
administration database.13 In general, family history informant characteristics such as mean age, ethnicity, or education were infrequently evaluated.

Sixteen studies (17 papers)7,8,10-24 evaluated the accuracy of family history reports by attempting to confirm the true cancer status of the relatives about whom informants provided information. Eight studies13,14,19-24 verified the cancer status in relatives reported to be affected and those reported to be unaffected. The other eight studies (nine publications)7,8,10-12,15-18 only confirmed the cancer status of relatives reported to be affected. We considered the former studies to be of higher methodological rigor and therefore evaluated these two groups of studies separately.

For the studies verifying affected and unaffected relatives, specificity across all cancer types and with varying modes of collection was consistently high (range 91 to 99 percent), suggesting that patients were very accurate in identifying relatives without cancer. These varied as follows for the different cancers: breast 95 to 98 percent; colorectal 91 to 92 percent; ovarian 96 to 99 percent; prostate 93 to 99 percent. The sensitivity values showed greater variability, with breast cancer having the highest values. The percent varied as follows: breast 85 to 90: colorectal 57 to 90; ovarian 67 to 83; prostate 69 to 79. The extent to which the verification method or the manner of family history collection affected the sensitivity estimates has not been well evaluated.

Fifteen factors were identified within the studies which could influence accuracy of family history reporting. The most frequently reported factors were age (no clear effect), gender (some effect depending on type of cancer and family line), education level (mixed effects) and degree of relatives (consistent trend towards increased accuracy of reporting for first degree compared to second or third).

Question 2: Family History Tools Designed To Improve Collection by Primary Care Professionals

A total of 39 different tools, implemented in 40 unique studies, and reported in 45 publications passed full text criteria. Our initial focus was on identifying studies that described FHxTs developed or used in a primary care setting; however, after careful review, we noted that many studies described tools used in other settings that appeared potentially relevant to primary care (criteria included length, ease of use, complexity of information, need for specialized training). We also sent e-mail queries to all authors of eligible studies that did not provide sufficient detail of the FHxT or a copy of the tool. Fifteen authors (of 16 publications)8,10,11,16,17,21,23,25-33 did not respond and therefore we were unable to determine whether the FHxT was applicable for use within primary care. For those studies for which we evaluated the FHxT, six tools from seven publications13,18-20,24,34,35 were assessed as inappropriate for primary care; all of these had been developed and used in research settings. Of the remaining 22 publications, four36-39 described the prototype and final versions of the same FHxT (RAGS/GRAIDS), which we counted as a single tool; and two40,41 were companion publications. Thus 18 distinct tools, from 22 publications, were identified as being applicable to primary care settings.

Fourteen tools42-55 were designed for completion by patients, and four tools (eight papers)36-41,56,57 were designed for use by health professionals. The majority of tools (n = 15) were designed to collect data on family history of breast or breast/ovarian cancer and only two tools captured data on prostate cancer. The published reports indicated that eight of the tools46,48,49,51,52,54,55,57 were used in a proactive way (intended for general or targeted population...
coming into contact with PCP, irrespective of a known cancer risk or concern, eight (12 papers)36,38-41,43-45,47,53,56 in a reactive manner (intended for individuals with perceived or recognized familial risk of cancer, including individuals concerned about cancer risk), and two in a mixed approach.42,50 The majority used a paper-based format to collect family history.

The tools were evaluated using a range of study designs. Eleven tools were evaluated relative to “ideal”, best estimate genetic interview, or current (“standard”) practice and seven tools were not evaluated relative to a comparator. Of the five tools evaluated against genetic interview, in three there was no control arm to the study, with interview being completed after FHxT.43,45,49 Similarly, when compared to current practice, in three studies, patients completed the FHxT followed by capturing information in medical records.47,50,52 Despite these different study designs the findings were consistent, with FHxTs performing well against “ideal” interviews and significantly better than standard practice.

Question 3: Risk Assessment Tools Designed To Improve Management of Patients

For the purposes of this review we have defined a RAT in primary care as: An active knowledge resource that uses family history data, with or without other relevant evidence to generate case specific advice [knowledge component], designed to support decision making relating to management of cancer risk in individual patients [target decision component, timing component], by health professionals, the patients themselves, or others concerned about them [user component].

Sixteen publications, representing 10 unique studies, were included. All 10 tools were designed to stratify individuals into risk categories, and all had a component which indicated some form of clinical or personal action. Six tools, reported in seven papers,43-45,58-61 were designed to assess risk of breast or breast/ovarian cancer only, four tools (seven papers)31,36-39,62,63 were designed to assess risk of breast/ovarian and colorectal cancer, and one tool (two papers)40,41 focused on breast/ovarian, colorectal and prostate cancer. No tool was identified that focused solely on ovarian, colorectal, or prostate cancer risk.

Of the seven tools intended for use by professionals, five were developed explicitly for use by PCPs, either family physicians (four tools)36-39,58,60-63 or physicians working in ambulatory care settings (one tool, two papers).40,41 Two appeared to have been developed in settings other than primary care, but intended for eventual use in that setting.43,59 One patient tool31 was developed in a primary care setting, and the other two44,45 were considered potentially applicable to use in primary care settings.

Three tools (five publications) were robustly evaluated in controlled trials.36,60-63 The development of one tool was described over four papers from evaluation in “laboratory-type” conditions38,39 to controlled trials in routine practice.36,37 The success of two of these RATs was confirmed by compliance to referral criteria in two studies (three papers),36,60,61 however in one study there was no subsequent significant difference in patients identified at increased risk by genetic specialist.36 The final tool (two papers) did not demonstrate any statistical difference in physician confidence and patients’ risk perception.62,63
Discussion and Conclusions

This review explored both the accuracy of family history reporting by patients and the effectiveness of tools for collecting and using familial cancer history in a primary care setting. Ideally, patients are able to report accurate information on their family history, assisted by effective tools, and health care providers are able to use the information to make beneficial preventive and clinical management decisions.

The accuracy of self reported family history has implications for the correct risk assessment and management of patients. Accuracy of cancer family history reporting appears to be dependent on cancer type and method of collection, and accurate reporting of absence of cancer (specificity) appears to be greater than accurate reporting of presence of cancer (sensitivity). Accuracy of recall and reporting may be influenced by both patient factors and by the method used to capture the data (the tool). No studies appear to have examined both of these together, so it is impossible to comment definitively on their relative contributions to any lack of accuracy.

Very few FHxTs have been developed for, and evaluated in, primary care settings. Further, few tools have been compared with either “best practice” (genetic interview) or current primary care practice (family history as recorded in charts). Although the evidence is very limited, and depends on extrapolation of studies of tools in settings other than primary care, it suggests that systematic FHxTs may add significant genetic family history information compared to current primary care practice.

A number of RATs, of varying format and complexity, have been developed for primary care settings, and a few of these have been evaluated in controlled trials. These studies provide tentative evidence for the effectiveness of such tools, but their utility in routine practice has not been established.

Recommendations

1. Family history is a fundamental element of health information, and the ability to take an adequate and accurate family history should be recognized as a core skill for all PCPs, irrespective of the availability of tools.

2. Consensus should be reached on the extent of family history enquiry necessary for different clinical purposes and circumstances, taking into account the likelihood of accuracy of self reported information for different relatives, and the use to which the information will be put (e.g., overall or specific risk assessment). Until the evidence base is clear, it is suggested that a minimum adequate cancer family history should include information on siblings, parents and grandparents (and the paternal and maternal lineage of the latter), specific enquiry about whether other relatives had the cancers of interest, and the ethnicity of the respondent. When cancer is identified, the age of diagnosis should also be noted, and other relatives with similar or related conditions identified.

3. The benefits, costs and harms of using patient-completed tools for systematic family history collection and risk assessment, as a substitute for, or complement to, professional tools should be further examined. As well as assessing technical outcomes such as accuracy and completeness of data captured, evaluations should consider outcomes which relate to patient “empowerment” and the use of practitioner and health care resources.
4. Further research is required to identify the specific strategies and tool features which promote the most accurate reporting of family history information.

5. The optimum interval for updating a patient’s family history information in primary care should be formally evaluated.

6. Further evaluation of FHxTs and RATs in routine clinical settings and practice is required. Studies should: adopt appropriate comparators (generally current practice); ensure that tools are optimized (in terms of, for example, face and content validity) before evaluation; measure outcomes that relate to utility in routine practice; measure outcomes that provide information on potential costs or harms as well as benefits; and address or explore contextual factors which may modify utility in practice (e.g., practice infrastructure, time available).
Evidence Report
Chapter 1. Introduction

Importance of Family History Collection for Cancer Risk Evaluation

A positive family history is a risk factor for many chronic diseases, reflecting “the consequences of genetic susceptibilities, shared environment, and common behaviors”. The systematic collection and assessment of family history information is a potentially valuable tool in preventive medicine, and is crucial in the identification of genetic risk. In some situations, family history information alone can form the basis for offering patients appropriately tailored preventive interventions. In addition, the clinical predictive value of even the most accurate DNA test is strongly influenced by prior probability—such as a positive family history. For example, Rich and colleagues illustrated how the positive predictive value of the same DNA-based test for familial adenomatous polyposis (FAP) could rise from about 11 percent in a patient where no family history information was available to over 99 percent if the patient accurately reported FAP in just one sibling or parent. Thus, family history information is potentially useful both as a clinical tool in its own right, and also as an important adjunct to DNA-based testing.

Cancers are a group of relatively common conditions in which, for at least some, family history appears to be an important risk factor. A British study suggested that a typical UK family physician with 2,000 patients would expect up to 50 of those aged 35 to 64 to have a history of familial cancer, and 30 to 40 patients meriting some form of active preventive surveillance. Cancer family histories can broadly be divided into three categories: hereditary, familial, and sporadic. Hereditary cancers are predominantly single gene disorders with Mendelian patterns of inherited risk. Familial cancers describe other less obvious clusters of cancer within families, thought to be due to combinations of multiple low penetrance gene mutations with or without contributions from shared environmental and/or behavioral risk factors. Sporadic cancers are those which occur without an apparent hereditary or familial pattern.

This report focuses on four cancer types: breast, ovarian, prostate, and colorectal. These are some of the most common cancers where the role of family history is widely recognized as a risk factor. For each of them, the contribution of familial risk is reflected in evidence-based consensus statements (e.g., http://www.ahrq.gov/clinic/uspstfix.htm). In some families, these cancers form part of recognized hereditary syndromes; for example, BRCA1 mutations increase familial risk of breast, ovarian and prostate cancer while MLH1, MSH2, and other DNA mismatch repair genes increase the familial risk of colorectal, endometrial, ovary, small bowel, and pancreatic cancers, among others. In some cases, ethnic ancestry is also associated with risk of cancer-associated genetic mutation, such as breast cancer in the Ashkenazi Jewish community.

Primary Care Physicians and Cancer Risk Assessment and Management

Primary care providers (PCPs) have always used family history information as a core tool for their practice, well before the arrival of the “genomics age”. However, the increasing emphasis
on identifying and managing genetic susceptibility, and the question of what might now be considered an “adequate” family history for this purpose, presents real challenges for PCPs.\(^6\) While a genetics specialist may be able, indeed advised, to devote substantial time to eliciting and confirming family history data (on the order of several hours)\(^{65,78,79}\) family physicians, internists, and other non-genetics providers may have only minutes. Other barriers to more than a “minimal” approach include unfavorable reimbursement policies, pressure from colleagues and patients to focus on other aspects of care, perceived lack of skills, and lack of confidence.\(^3,80\) Conversely, family physicians and other PCPs may be able to capture family history data over time, and are well placed to keep such information up to date.

The use of family history information to make preventive and clinical management decisions also depends on the adequacy of providers’ knowledge, skills and confidence; this is extremely challenging in a field where the knowledge base is rapidly evolving. To complement more general educational interventions, there is a strong case for the development of effective tools, designed for use in primary care settings, which permit providers to translate an individual’s family history data into meaningful risk stratification, with linkage to evidence-based guidance on appropriate preventive and clinical management interventions. Thus, the translation of family history information into improved health outcomes depends on the availability and integrated use of effective interventions for data capture, risk assessment, and clinical intervention.

Accuracy of Family History Reporting

In order for family history to be of value in clinical decision making, patients must possess, and PCPs must be able to ascertain, accurate family health information. Assessing accuracy requires a clear idea of an appropriate gold standard—what patients “should” know, and what clinicians “should” be able to obtain. In simple terms, an “accurate” family history could be considered to be one which is sensitive (disease in relatives is correctly identified) and specific (lack of disease in relatives is correctly identified). Work in the field of psychiatry has suggested three gold standards for studies of family history taking: an “ideal” standard, based on comprehensive data obtained from the relatives, hospital and physician records and/or disease registers;\(^{81-83}\) a “best estimate diagnosis” (BED) standard,\(^{84}\) based on best available data from death certificates and medical records,\(^{65,85,86}\) and a “pragmatic BED”, based on the family history obtainable in a detailed interview conducted by a trained clinical genetics professional. Our consultation with the key stakeholders in this review has indicated that an appropriate practical gold standard for evaluating accuracy would be information obtained directly from relatives’ medical records, cancer registries, and/or death certificates. Such information should be used both to confirm reported cases of cancer in the family, and to confirm absence of a cancer diagnosis in relatives who were reported not to have cancer.\(^{87}\)

Collection of Family History in Primary Care

There is no single agreed-upon approach to guide primary care practitioners in taking a genetic family history within office consultations (which are often brief). Family history taking can be conducted as part of a disease specific approach which aims to identify risk of selected single gene disorders (e.g., hereditary breast or colon cancer) for the purpose of ensuring appropriate specialist intervention.\(^{88,89}\) Alternatively, it can be directed more broadly towards
identifying possible risk of a number of common multi-factorial disorders such as cancer, diabetes, and coronary heart disease.

Family history data may be recorded as notes or lists within patient charts, represented as family trees or genetic pedigrees, or stored within computer databases which can be linked to decision support systems. In the last few years several computer-based pedigree drawing packages have been developed, such as genogram software. It is not clear whether such approaches translate well from specialist use to application in primary care.

There is also no consensus on the extent or detail of family history information which needs to be recorded in primary care, compared with specialist genetics settings. The extent of cancer family history collection has to be adequate to enable PCPs to make appropriate clinical and prevention decisions, but it is not clear whether this necessarily requires the same approach as that used by a genetics specialist.

Risk Assessment in Primary Care

There are several issues which may influence the translation of family history information into meaningful risk assessment for patients. These include the level of complexity of family history information which is actually required for risk assessment for any given disorder, the validity of risk stratification guidelines or algorithms, the kind of tools that exist to facilitate risk stratification, (and their effectiveness in practice), and the actual predictive value of risk assessment tools (RATs).

At its most simple, assessing familial risks associated with common adult-onset diseases requires setting a threshold where the family history indicates a cause for suspicion (i.e., dichotomizing risk into reassuring the patient or recommending further action). A more complex approach is to separate risk into three or more strata (e.g., “high”, “moderate” and “average”). In general terms, individuals at “average” risk (the risk level of the general population) would be offered standard preventive advice, those at “moderate” risk would be offered a higher level of intervention, such as more extensive or more frequent surveillance, and those at “high” risk would usually be referred for specialist assessment and possibly considered for mutation testing.

Risk assessment tools need to be valid, in terms of their clinical predictive value, but they must also be feasible for use in the intended settings, and generate benefits in the process or outcome of care when compared with current practice. Feasibility and effectiveness in practice may be influenced by the actual implementation format; for example, a risk stratification protocol could be presented in paper-and-pencil format, on a personal digital assistant, or on the desktop in a web-based format. Such tools may be passively disseminated, or accompanied by educational interventions and/or ongoing support from genetics professionals. Recent examples of web-based tools include Harvard’s “Your Disease Risk” and the Centers for Disease Control’s (CDC) Family HealthWare.

The ACCE Framework

Tools for family history collection and risk assessment lend themselves to evaluation using the framework developed for genetic predictive testing by the Secretary’s Advisory Committee on Genetic Testing. This framework (see Table 1, derived from Yoon 2003), widely referred to...
as the “ACCE” framework, comprises four evaluative elements: analytic validity, clinical validity, clinical utility, and ethical legal and social issues.2,96

Table 1. Application of the ACCE framework96 to family history as a screening tool

<table>
<thead>
<tr>
<th>Element</th>
<th>Definition</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic validity</td>
<td>An indicator of how well a family history tool measures the characteristic (“family history”) that it is intended to measure</td>
<td>Analytical sensitivity and specificity</td>
</tr>
<tr>
<td>Clinical validity</td>
<td>A measurement of the accuracy with which a RAT based on family history information predicts disease risk</td>
<td>Clinical sensitivity and specificity Positive and negative predictive values</td>
</tr>
<tr>
<td>Clinical utility</td>
<td>The degree to which benefits are provided by using a clinically valid RAT based on family history information</td>
<td>Availability of effective preventive and clinical interventions Health risks and benefits of preventive and clinical interventions Health risks and benefits of family history and RATs Economic assessment</td>
</tr>
<tr>
<td>Ethical, legal, and social implications</td>
<td>Issues affecting data collection and interpretation that might negatively impact individuals, families and societies</td>
<td>Stigmatization Discrimination Psychological harm Risks to privacy and confidentiality</td>
</tr>
</tbody>
</table>

Thus, in terms of family history, analytic validity describes the ability of a family history tool to correctly identify the pertinent information on disease in relatives. This is dependent on the effectiveness of a tool in promoting acquisition of appropriate family history data, and also on the ability of an informant to provide accurate information. Clinical validity describes the ability of a RAT to use valid family history data to correctly predict or stratify cancer risk in the informant. Risk assessment tools may vary in their complexity, from simply identifying an elevated cancer risk in the family, to more detailed risk prediction scores—but all are dependent on valid risk stratification criteria. An effective risk prediction tool therefore depends on a valid family history tool, and may or may not also take account of non-genetic factors which modify disease risk. Clinical utility considers the evidence that family history assessment, risk stratification, and subsequent preventive or clinical interventions actually bring overall health benefit to the individual patient. The ethical, legal, and social issues component of the framework considers the impact and consequences of using a family history based approach from a broader societal perspective.
The aim of this review is to provide a partial contribution to the evidence base underlying analytic validity (the ability of a tool to capture accurate family history data) and clinical validity (the ability of a RAT to correctly predict disease risk). The main focus is on describing the availability and format of available family history and RATs, and the evidence that these are more effective than current practice in promoting accurate family history collection and assessment in primary care and population settings. It is not within the scope of the review to assess either the evidence underlying risk stratification systems (i.e., the predictive value of guidelines or criteria), or the evidence that preventive or clinical interventions based on such stratification provide overall benefit to patients (i.e., clinical utility). However, the evidence assembled in this review is a crucial element of determining how best to capture and use family history information in primary care to promote the anticipated population health benefits.

Scope and Purpose of the Systematic Review

This systematic review addresses three research questions relating to the clinical utility of ascertaining family history as follows:

1. What is the evidence that patients or members of the public accurately know and report their family history of each one of, or a combination of, the following cancers: breast, ovarian, prostate, and colorectal?

2. How well do the different systematic family history collection forms and tools, such as take home tools, web based tools, etc., improve non-systematic approaches to family history collection by PCPs?
 a. Identify tools intended to improve family history collection by PCPs.
 b. Compare these tools against current practice.

3. What tools exist to enable PCPs to calculate, interpret, and act upon family history based risk information, and how well do these tools perform? For each cancer of interest:
 a. Identify tools designed to facilitate calculation and/or interpretation of family history based risk information, with the purpose of promoting recommended clinical actions.
 b. Assess the evidence for effectiveness of these tools in facilitating calculating and/or interpretation of family history based information.
 c. Assess the evidence for effectiveness of these tools in promoting recommended clinical actions.
 d. For each tool, identify the evidence base for each recommendation.
Chapter 2. Methods

Analytic Framework

An analytic framework is a schematic representation of the strategy for organizing topics for review and for guiding literature searches. Figure 1 illustrates the inter-relationships among the three research questions being addressed in this systematic review. As shown in Figure 1, the collection of family history data, a central focus of this systematic review, connects with the three questions. First, the validity of reporting of family history data (in general) by patients (Q1), second, characteristics of the systematic family history collection tools, designed to be used to capture such data in the primary health care settings (Q2), and, third, the characteristics and effectiveness of risk assessment tools (RATs) designed to allow practitioners and patients to make use of family history information to improve health outcomes (Q3). Other important questions are the format of various tools, strategies underlying family history collection and risk assessment, the settings in which tools are intended for use, the settings in which tools are evaluated, and the comparisons against which both family history tools (FHxTs) and RATs are actually evaluated.

Figure 1. Analytic framework for the research questions evaluated in this review

While there is some overlap between FHxTs and RATs, some FHxTs do not contain a decision support element, while some RATs collect family history data which is so targeted that it is unlikely to be sufficient for a complete or generic FHxT, and others have no FHxT component at all. The evaluative framework for both FHxTs and RATs is described in further detail in the topic refinement section.

Note on Terminology. In the published literature, a number of terms have been used to indicate the individuals from whom family history information is collected, including “patient”, “consultant”, “subject”, “participant”, and “proband”, but there is no single standard, accepted term in general use. Within this report, we wish to promote consistency of terminology, and
reduce potential ambiguity and confusion. Therefore, although it is used with a particular meaning in some clinical contexts, we have adopted the use of the term “informant” in the rest of the report to indicate the individual who provides the family history information.

Accuracy of Family History Reporting

Accuracy of a test (in this case reporting of family history) represents the proportion of all test results that are true (both positive and negative outcomes). If individuals reporting family history were 100 percent accurate they would correctly identify all relatives with cancer and all those without cancer. A number of metrics may be used to convey accuracy. Of these, sensitivity and specificity are not influenced by the underlying prevalence of the characteristic of interest in the population (in this case, positive family history). We therefore report sensitivity and specificity, where this is reported in (or can be calculated from) eligible papers. Consider the situation where “reporting of family history by the informant” is considered the “test”, and is compared to a “gold standard” (the real situation). In this context, sensitivity indicates how accurate informants are at identifying relatives who truly have cancer. If reporting is highly sensitive, only a few relatives with cancer will be reported as cancer-free. Conversely, if reporting is highly specific, only few relatives who are truly cancer-free are misreported as having cancer.

It is likely that accuracy of reporting will be influenced by both informant factors and factors relating to the method of capturing the family history data. As much as possible, we captured information on such attributes and considered how the results appeared to be influenced by them, although we did not attempt a formal regression analysis to examine their independent effects(s). We also examined reliability (repeatability and reproducibility) where this was possible, recognizing that this is also a product of accuracy of recall and consistency of reporting (informant factors) and performance of the instrument used to capture the data (tool factors). There are several measures of test-retest reliability such as intra-class correlation co-efficient and Cohen’s kappa statistic. We note that there is no consensus on the ideal interval for assessing reliability of family history information, bearing in mind that the medical status of relatives inevitably changes over time.

As discussed in Chapter 1, three gold standards have been suggested for studies of family history taking: an “ideal” standard, a “best estimate diagnosis” (BED) standard and a “pragmatic BED” standard. We accepted the following gold standards for the presence or absence of cancer in the first and second degree relatives of the informant: (1) the relative’s medical record, (2) confirmation of status by the relative’s physician, (3) death certificate, (4) cancer registration, (5) direct confirmation by the relative in question. Ideally, accuracy studies should demonstrate verification of health status (presence or absence of cancer) both in relatives who are reported to have had cancer, and relatives reported not to have had cancer; however, in order to evaluate as wide a range as possible of the available literature, we did not exclude review studies which verified only the status of relatives reported to have had cancer.

We defined a priori what we meant by the degree of the relative. First degree relatives were defined as those who share one-half of their genetic information with the individual reporting family history—their full siblings, parents and children. Similarly, second degree relatives were those who shared one-quarter of their genetic information with the informant—their grandparents, grandchildren, uncles, aunts, and half-siblings.
Family History Collection Tools

We defined a FHxT as:
“A systematic and coherent approach used to capture and document family history, appropriate for the clinical setting, with the potential to lead to decision making by a clinician.”

This review focused on FHxTs which could be applied in the clinical setting, but we also included studies that described tools developed for research purposes, and for settings other than primary care, where we judged they appeared potentially applicable within primary care settings. We captured data on the following tool characteristics that may influence the clinical utility of the tool in current primary care practice.

1. Patient targeting—”reactive” or “proactive”.
 • Reactive—the tool was intended to be used only to collect family history information from individuals with perceived or recognized familial risk of cancer, including individuals concerned about cancer risk.
 • Proactive—the tool was intended to be used to collect family history information from a general or targeted population coming into contact with primary care, irrespective of a known cancer risk or concern.

2. Study setting in which the FHxT is being administered—”clinical” or “research”.
 • Clinical—the primary objective of the study was to assess the use of the FHxT in routine clinical practice.
 • Research—the primary objective of the study was to use the FHxT for purposes other than routine clinical practice, for example designed for data capture in epidemiological studies.

3. Type of comparator—”best estimate” or “current practice”.
 • Best estimate—the comparator was information collected by a clinical genetic specialist interview or equivalent.
 • Current practice—the comparator was information collected in a way that was “standard” for the primary care setting, e.g., family history information recorded in patient charts.

Where a tool was not described as designed for or evaluated in a primary care setting, applicability was assessed by two independent reviewers against five criteria: length of tool, ease of completion, need for specialist knowledge, whether it was designed to capture data on at least all first degree relatives, and clarity of layout (including appropriate structure and logical sequence).

Risk Assessment Tools

While there is no one commonly accepted definition of a RAT, for the purposes of this study, we have followed the approach of Liu et al. who define a decision tool as:
“…an active knowledge resource that uses patient data to generate case specific advice, which supports decision making about individual patients by health professionals, the patients themselves or others concerned about them.”97 (p90)

Defined thus, RATs have four essential characteristics:

1. The tool is designed to aid a clinical decision by a health professional and/or patient (“user”);
2. The tool focuses on decisions concerning individual patients (“target decision”);
3. The tool uses patient data and knowledge from family history to generate an interpretation that aids clinical decision making (“knowledge component”);
4. The tool is designed to be used before the health professional or patient takes the relevant decision (“timing”).

This definition encompasses a wide range of potential tool “technologies”, including computer-based decision support systems, reminder cards, guidelines, predictive scores, checklists, etc. Drawing on this definition, we have developed the following working definition of a “family history based cancer risk assessment/decision tool”, for use in this review:

“An active knowledge resource that uses family history data and other relevant evidence to generate case specific advice [knowledge component], designed to support decision making relating to management of cancer risk in individual patients [target decision component, timing component], by health professionals, the patients themselves, or others concerned about them [user component].”

We translated the four “essential characteristics” into this specific form for the context of this review:

1. Users—health professionals, patients, members of the general population
2. Target decision—clinical management (e.g., referral for genetic counseling), or individualized preventive management strategies (e.g., disease screening or surveillance)
3. Knowledge component—a defined model or set of criteria which transform family history data into information which serves the target decision making process
4. Timing—designed to be used before the health professional or patient takes the relevant decision.

The breadth of this definition potentially allows for the inclusion of a large number of guidelines, algorithms, statistical models, etc. In order to maintain the focus of this review on tools most likely to be feasible for use in primary care, we included only those which were explicitly developed for primary care, or where specialist genetics knowledge did not appear necessary to use the tool. We excluded tools where the only output was risk of carrying a cancer-associate mutation (e.g., BRCAPro98 or BOADICEA99), rather than risk of disease, as we judged this required genetics specialist knowledge for interpretation. Noting also that there
are many hundreds, possibly thousands, of guidelines which have been developed over the past few years around familial cancer risk, we included them only if they were part of a package, system, or intervention designed to foster their effective implementation in practice. Thus, widely used guidelines such as the modified Amsterdam criteria,100 the Manchester scoring system,101 the UK NICE guidelines on familial breast cancer72 were not included unless they were part of such a system. For each tool which met the inclusion criteria, we collected data on the guideline(s) or evidence cited which appeared to form its knowledge component.

Topic Refinement

The first step during the topic assessment and refinement process was a teleconference with partner organizations. The Task Order Officer (TOO) invited topic experts and the McMaster multidisciplinary research team to define the scope of the topic to be addressed and to refine/clarify the preliminary research questions for this evidence report. An international Technical Expert Panel (TEP) was assembled to provide high level content expertise on this topic (Appendix E*) and to participate in conference calls on an as-needed basis throughout the data refinement and extraction phase. The TEP assisted in refining the research questions and raising methodological issues of relevance to this review.

The initial work order specified that the systematic review should be limited to adult populations and should examine the family history of at least one of the following cancers: (1) breast, (2) ovarian, (3) prostate, and (4) colorectal. The second and third questions of the review were limited to primary care settings or practitioners.

The first research question in this systematic review focuses on the accuracy of family history knowledge and reporting. The investigative team considered, but ultimately rejected, addressing this question by updating a previous systematic review.102 This review included original articles describing the accuracy of self-reported family history for breast, colon, ovarian, prostate, endometrial, and uterine cancers using verification from identified relatives’ medical records, physician, death certificate, and/or verification within a population cancer registry. The limitations of this review included: lack of a delineated search strategy, overly specific search terms, non-reporting of agreement between reviewers, non-reporting of data collection forms used, and lack of clarity of reasons for excluding reports.

A number of issues relevant to the identification and evaluation of FHxTs were identified and discussed with the TEP, including: (1) the most important attributes that should be considered within each of these tools; (2) which of these elements were most relevant for primary care; and (3) the incremental value of the tool relative to current practice. The TEP recognized that the selection of gold standards for family history reporting and collection is arbitrary and that an “adequate” family history (for the purposes of making decisions relating to familial cancer risk) requires not only identifying relatives with and without the cancer, but also the relationship of the affected relative, the age of onset of cancer in those affected, and identification of several cancer types beyond the “target” cancer in question (e.g., family history of endometrial and kidney cancer is relevant in considering risk for hereditary nonpolyposis colorectal cancer).

For the purposes of the review, a definition of primary care was established with the participation of the partner at the CDC and the TEP. Primary care practitioners included family physicians/general practitioners, general internists, obstetricians, gynecologists (obstetrics and

Appendixes cited in this report are provided electronically at http://ahrq.gov/clinic/tp/famhisttp.htm
gynecology practitioners are PCPs for some women), nurses, nurse practitioners, physician assistants, nutritionists, behavior counselors.

Family history information is of clinical value only if it can be used for some form of meaningful risk stratification. Issues around risk assessment and stratification were explored with the TEP, particularly whether the various risk stratification algorithms or guidelines on which tools are based are themselves evidence-based—i.e., whether such algorithms or guidelines have adequate predictive value (i.e., clinical validity) and their use has been shown to improve patient or clinical outcomes (i.e., clinical utility). It was recognized that exploration of this would broaden the scope of the review to such an extent that it would become unmanageable. Therefore, it was determined that the validity of underlying algorithms or guidelines should be taken at face value. Thus, the focus of the review should be confined to evaluating whether tools were effective in facilitating the translation of a patient’s family history information into a specific risk stratum, compared with current primary care practice, on the assumption that such stratification was worthwhile.

Methods

Search Strategy

The systematic review protocol search included the electronic databases MEDLINE®, EMBASE®, CINAHL® and Cochrane Controlled Trials Register (CCTR)® from 1990 to July 2007. In addition we retrieved and evaluated references from eligible articles. Hand searching was not undertaken for this review. However, we did review the publication types “letters” (normally excluded from reviews); the investigators suggested that, within the content area of cancer genetics, primary data information might be published as letters in some journals. We also undertook a search of relevant grey literature sources. Detailed search strategies and websites explored are listed in Appendix A.*

Eligibility Criteria

A list of eligibility criteria was determined and standardized forms were developed in Systematic Review Software (SRS) for the purposes of this systematic review. The forms and help guides detailing the eligibility criteria can be found in Appendix B.*

Publication Year, Type and Language

Inclusion:
Language: Only English language studies were eligible.
Publication Date: 1990 to July 2007.

Exclusion:
Publication type: Narrative and systematic reviews (except for Q2b), editorials, letters (with no primary data), comments, opinions, abstracts and unpublished studies.

* Appendixes cited in this report are provided electronically at http://ahrq.gov/clinic/tp/famhisttp.htm
Study Design

Inclusion:
There was no restriction of primary study designs for both quantitative and qualitative types.

Exclusion:
Narrative and systematic reviews.

Population

Inclusion:
Any subject 18 years of age or older.

Intervention Cancer Type

Inclusion:
Examination of family history of breast, ovarian, prostate, or colorectal cancer.

Exclusion:
Tools that do not include at least one of the four specified cancers or cancer data presented in aggregated form that includes non-eligible cancers.

Intervention Practitioner Type (Applicable Only to Q2 and Q3)

Inclusion:
Studies with practitioners from primary care settings; the definition of primary care for this review was established as follows:
- family physicians/general practitioners
- general internists
- obstetricians
- gynecologists (obstetrics and gynecology practitioners are primary care providers for some women)
- nurses
- nurse practitioners
- physician assistants
- nutritionists
- behavior counselors.

Exclusion:
All other health/medical professional groups.

Intervention Tool

Inclusion Question 2:
Tool or standardized method to systematically capture/collaborate information related to family history for the relevant cancers or history of illness in other family members by any method whether self report or collected by a professional.

Exclusion Q2:
Any ad hoc approach that is not systematic, or uses open questions, when collecting family history for the relevant cancers or a personal medical history taking only with no components dealing with family history.

Inclusion Q3:
A standardized method or tool designed to stratify, or interpret level of familial cancer risk, in order to support decisions made by PCPs relating to management of risk of familial
cancer. The cancer risk calculation method or stratification method must be based primarily on family history information. The tool meets the definition of RAT (defined as one that specifies a user, target decision, knowledge, and timing), and, at a minimum, stratifies individuals into categories on the basis of risk of disease.

Exclusion Q3:
Family history tools without a risk calculation, stratification or patient-specific decision support component tool which calculate risk of mutation only, tools which require specialist genetics knowledge, and stand-alone guidelines.

Also explicitly excluded from Question 2 and Question 3:
- Articles with a primary focus on genealogy (non-medical family history)
- Articles which include mention of family history in some form but do not describe a tool or measure for use in clinical settings.

Applicability of Tools

Inclusion:
Tools designed specifically for use by PCPs, or tools developed for other practitioners with the potential to be used in primary care.

Exclusion:
Tools depending on specialist expertise in genetics for their use or interpretation.

Study Selection

A team of study assistants was trained to apply the eligibility criteria in preparation for screening the title and abstract lists and the full text papers. All levels of screening were done in web-based Systematic Review Software (SRS) (TrialStat Corporation, Ottawa, Ontario Canada). Standardized forms and a training manual explaining the criteria were developed and reviewed with the screeners (Appendix B*). For the title and abstract phase, two reviewers evaluated each citation for eligibility. Articles were retrieved if either one of the reviewers judged it as meeting eligibility criteria or if there was insufficient information to determine eligibility. For screening of full text articles, two screeners came to consensus on the identification, selection, and abstraction of information. Disagreements that could not be resolved by consensus were resolved by one of our McMaster research team members. The level of agreement for inclusion of studies was measured using kappa statistics.

Data Extraction

Appropriate data collection forms were developed for use in the systematic review (Appendix B*). All eligible studies from the selection phase (full text screening) were abstracted onto a data form according to predetermined criteria. One data extractor transferred the data onto these forms, and another checked the answers for accuracy before they were entered into SRS. Data entries were verified by the investigators responsible for summarizing the different report results sections.

Quality Assessment of Included Studies. To assess the quality of primary studies, we utilized standardized rating scales with acceptable reliability and validity. The specific scale

* Appendixes cited in this report are provided electronically at http://ahrq.gov/clinic/tp/famhisttp.htm
used was dependent on the study design and the research question. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS)103 was selected to evaluate studies primarily focused on accuracy (i.e., included in Q1). The Jadad scale was used for studies that were randomized controlled trials (RCTs).104 For true observational study designs, the Down’s and Black quality assessment scale was used.105 Studies that were neither of these study designs were evaluated qualitatively without the use of formal checklists. The instruments used to evaluate quality are shown in Appendix B.*

Summarizing Our Findings: Descriptive and Analytic Approaches

A qualitative descriptive approach was used to summarize study characteristics and outcomes. Multiple publications on the same study cohort were grouped together and treated as a single study with the most current data reported for presentation of summary results. Standardized summary tables explaining important study population and population characteristics, as well as study results, were created. Meta-analysis was not undertaken for eligible studies within this review as the clinical heterogeneity between studies was considerable.

For those papers evaluated for research Q1, where the actual numbers of true and false positive and negative results (TP, FP, TN, FN) were presented, or where enough information was given to allow us to calculate and estimate these numbers, we recalculated the sensitivities and specificities with the accompanying 95 percent confidence intervals (CI) where possible.

For those papers evaluated for research Q2, descriptive data on the attributes of FHxTs were presented. For those FHxTs that had been formally evaluated, we reported outcome data separately for those tools compared with best estimate, and those compared with current practice comparators.

For those papers evaluated for research Q3, we presented descriptive data on the attributes of RATs, including the evidence base, if any, underlying each tool. For those RATs that had been formally evaluated, we reported data on outcomes relevant to the use of the tool in supporting decisions by users in practice (e.g., the pattern of referrals from primary to specialist care, patient perceptions of their cancer risk, health professional confidence in counseling patients concerned about their risk, etc.). Data regarding the validity of the knowledge component of each RAT (e.g., the scientific basis for guidelines, the predictive value of a stratification system, etc.) were captured where possible, but it is not within the scope of this review to consider the quality of such evidence (see “Topic Refinement”, above).

Peer Review Process

A list of potential peer reviewers was assembled at the outset of the study from a number of sources including our TEP, our partners, the McMaster research team, and the AHRQ. During the course of the project, additional names were added to this list by the McMaster Center and AHRQ. The content experts were asked to review the draft report and their comments and suggestions have been incorporated where possible for the final report (see Appendix E’).

* Appendixes cited in this report are provided electronically at http://ahrq.gov/clinic/tp/famhisttp.htm
Chapter 3. Results

The original search yielded 15,390 unique citations for all three research questions combined. During two levels of title and abstract screening, 14,840 articles were excluded. A total of 338 citations proceeded to full text screening. After the final eligibility screening a total of 56 studies were abstracted for data for the three research questions. Figure 2 details the number of eligible studies for each research question. The results of the systematic review are presented in this chapter according to the three main areas of investigation: accuracy, family history collection, and risk stratification.

Figure 2. Flow of studies to final number of eligible studies. Q1: Accuracy of family history reporting

<table>
<thead>
<tr>
<th>Title and Abstract Screening</th>
<th>Excluded at title and abstract</th>
<th>Full Text Screening</th>
<th>282 Excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=15,390</td>
<td>n=14,840</td>
<td>n=338</td>
<td></td>
</tr>
<tr>
<td>From electronic databases and grey literature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Excluded at title and abstract</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n=14,840</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eligible Studies
n=56

Q1 Accuracy
n=20 publications
19 tools

Q2 Family History Collection Tool
n=45 publications
18 tools

Q3 Risk Assessment
n=16 publications
10 tools
Question 1: What is the Evidence That Patients or Members of the Public Accurately Know and Report Their Family History?

General Approach

We undertook a broad approach to identifying studies evaluating accuracy of reporting family history. We did not limit studies to those presenting specific diagnostic accuracy metrics and included studies whose primary aim was to ascertain repeatability (variation observed when conditions are kept constant by using the same instrument and individual and repeating within a short time interval).

Studies Reviewed

A total of 20 publications evaluated the accuracy of reporting family history and were eligible for data extraction. One study was based on two publications10,11 leaving a total of 19 unique studies. Study and patient characteristics (such as study design, setting recruited, cancer type, relatives evaluated and criterion standard evaluated) are detailed in Appendix C* evidence tables.

We further classified studies by the type of accuracy that was evaluated as follows: 1) those studies (16 studies in 17 publications) which evaluated accuracy of family history reporting by attempting to verify the cancer status of relatives (i.e., accuracy compared with a gold standard), and 2) those (three) which evaluated the repeatability or reliability of the informant’s knowledge of family history rather than the true status of the relatives (i.e., no external gold standard).

For the purposes of this review we use the terms “affected” and “unaffected” to refer to those relatives who have had cancer, and those who have not, respectively. We present the results for accuracy according to these groupings, and with regard to specific participant characteristics, type of accuracy evaluated (gold standard or reliability), method of verification, and potential predictors or confounders of accuracy of reporting family history (Figure 3).

In general we can summarize the accuracy studies as predominantly having recruited participants who had cancer. Within the 19 studies (20 publications), there were three that recruited an entire sample of patients who were free of cancer; two studies involving individuals at high risk for colorectal7 or breast cancer,8 and one involving women undergoing mammography.9 In the four case control studies (five publications),10-14 the controls were derived from the general population matched for age,10,11 spouses of the informants or regional general practice lists,14 and from a linkage from license registration and health care administration database.13

All studies were classified as case series except four which were case control studies. Several important factors restrict comparisons across accuracy studies, such as the cancer diagnosis of the informants and the cancer information collected about the relatives. There were more studies evaluating informants with breast cancer than other types of cancers; there was a single study evaluating ovarian cancer syndromes within the informants. Some studies probed only specific cancers within relatives while others reported on all cancers within their family.

* Appendixes cited in this report are provided electronically at http://ahrq.gov/clinic/tp/famhisttp.htm
While there were only three studies with fewer than 100 informants, the number of relatives reported varied greatly between studies.

Studies Evaluating the Accuracy of Reporting by Verifying no Presence or Absence of Cancer in Relatives. Sixteen studies evaluated the accuracy of family history reports by attempting to confirm the true cancer status of the relatives about whom informants provided information. Eight studies verified the cancer status in relatives reported to be affected and those reported to be unaffected. The other eight studies (nine publications) only confirmed the cancer status of relatives reported to be affected. We considered the former studies to be of higher methodological rigor and therefore evaluated these two groups of studies separately.

Studies With Verification in Both Affected and Unaffected Relatives. Table 2 shows the eight studies that verified the cancer status both of relatives reported to be affected and unaffected. Three were case control studies that recruited participants with colon or colorectal cancer. The remaining five studies evaluated breast cancer patients and a single study evaluated patients with breast, ovarian or colorectal. A single study evaluated the accuracy of relatives’ perception of “awareness of cancer” rather than informants’ accuracy in reporting family members with cancer. Three studies recorded the informant’s recollection of any type of cancer in relatives, and the remaining studies examined reporting of relatives’ colorectal cancer, breast cancer, breast or ovarian cancer, or one syndromic group of cancers. In general, family history informant characteristics such as mean age, ethnicity, or education were poorly reported (Table 2). Similarly, characteristics of the relatives were also poorly reported within these studies.

The methods of family history collection varied with face-to-face interviews in two studies, mailed survey in four studies, and two with telephone interviews. The methods of verification of relatives’ cancer status varied between studies; also, within some studies different methods were used for checking the status of relatives reported to be affected and those reported to be unaffected. The methods used were: (1) personal interview (reportedly affected) and cancer registry; (reportedly unaffected) (2) face-to-face interview, survey, and death registry; (3) self report from mail-in survey of relatives; (4) relatives’ medical chart records and survey; (type not specified) (5) cancer registry alone; and (6) combined strategy (medical record or cancer registry or death certificate).
<table>
<thead>
<tr>
<th>Author Year Country</th>
<th>Study Design</th>
<th>Informant</th>
<th>Setting</th>
<th>Informant Cancer Status</th>
<th>Informant Male (%)</th>
<th>Informant Mean Age (yr)</th>
<th>Informant Ethnicity or Other</th>
<th>Method of Family History Collection</th>
<th>Cancers Types in Relatives</th>
<th>Method of Verification</th>
<th>Accuracy Metric Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitchell 2004 UK</td>
<td>Case control</td>
<td>Ca 199 Co 133</td>
<td>Clinic Cr</td>
<td>Ca 56 Co 55</td>
<td>Ca 64 Co 64</td>
<td>Ethnicity: NR Education: NR</td>
<td>F to F personal interview by genetics nurse</td>
<td>All cancers</td>
<td>Affected relatives: Scottish Cancer Registry Unaffected relatives: Scottish Cancer Registry</td>
<td>% agreement sensitivity specificity PPV NPV</td>
<td></td>
</tr>
<tr>
<td>Kerber 1997 USA</td>
<td>Case control</td>
<td>Ca 537 Co 910</td>
<td>Ca clinic Co Population based Colon (excluding appendix, rectosigmoid function and rectal cancers)</td>
<td>NR</td>
<td>30-79</td>
<td>Ethnicity: White Black and Hispanic proportion NR Education: NR</td>
<td>Computer assisted F to F personal interview computer assisted</td>
<td>All cancers but reported on Cr, uterine, Br, Ov, and prostate</td>
<td>Affected relatives: Cancer registry (a subset of data from the Utah Cancer Registry). Other: Utah Population Database Unaffected relatives: Utah Population Database (genealogic database)</td>
<td>Sensitivity Kappa OR for type of cancer</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Ca=cases; Co=controls; Br=breast; Ov=ovarian; Cr=colorectal; 1DR=first degree relative; 2DR=second degree relative; F to F=Face to face; NPV=negative predictive values; NR=not reported; OR=odds ratio; PPV=positive predictive values

* not specified but likely all female subjects due to the type of disease
<table>
<thead>
<tr>
<th>Author Year Country</th>
<th>Study Design</th>
<th>Informant n</th>
<th>Setting</th>
<th>Informant Cancer Status</th>
<th>Informant Male (%)</th>
<th>Informant Mean Age (yr)</th>
<th>Informant Ethnicity or Other</th>
<th>Method of Family History Collection</th>
<th>Cancers Types in Relatives</th>
<th>Method of Verification</th>
<th>Accuracy Metric Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aitken1995 Australia</td>
<td>Case control Cross-sectional</td>
<td>Ca 341 Co 903 positive history: 419</td>
<td>Clinic following colonoscopy</td>
<td>Cr</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Self-completed mail survey</td>
<td>Cr and any cancers or bowel polyp obstruction</td>
<td>Affected relatives: Medical records; medical history questionnaires were mailed to living relatives and surviving spouses asking whether the relative had colorectal or other cancer, if so, the age at diagnosis</td>
<td>Statistical differences between Ca and Co sensitivity and specificity extrapolated to entire sample</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Author Year Country</td>
<td>Study Design</td>
<td>Setting</td>
<td>Informant n</td>
<td>Informant Cancer Status</td>
<td>Informant Male (%)</td>
<td>Informant Mean Age (yr)</td>
<td>Informant Ethnicity or Other</td>
<td>Method of Family History Collection</td>
<td>Cancers Types in Relatives</td>
<td>Method of Verification</td>
<td>Accuracy Metric Reported</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Glanz 1999 USA</td>
<td>Case series</td>
<td>Population based</td>
<td>160</td>
<td>Cr</td>
<td>NR</td>
<td>50 19-84</td>
<td>Ethnicity: Japanese Hawaiian descent 78.9, White 9.4</td>
<td>Self-completed mail survey</td>
<td>Awareness of Cr</td>
<td>Affected relatives: Self-completed survey (postal): an epidemiological survey (see ref #7) and a psychosocial survey both</td>
<td>Data presented on accuracy of the relatives (not informants) in awareness of cancer, worry about getting and general knowledge of colon cancer</td>
</tr>
<tr>
<td>Eerola 2000 Finland</td>
<td>Case series</td>
<td>Clinic</td>
<td>NR</td>
<td>Br</td>
<td>0*</td>
<td>NR</td>
<td>NR</td>
<td>Self-completed mail survey: Series 1&2 mailed</td>
<td>Br and Ov</td>
<td>Affected relatives: Medical records, cancer registry and parish registry</td>
<td>% incorrectly reported</td>
</tr>
<tr>
<td>Anton-Culver 1996 USA</td>
<td>Case series</td>
<td>Population based registry</td>
<td>359</td>
<td>Br</td>
<td>0*</td>
<td>NR</td>
<td>Ethnicity: White 89%, Hispanic 8%, Asian 4%, Education: NR</td>
<td>Telephone interview using structured questionnaire</td>
<td>Br</td>
<td>Affected relatives: Cancer registry</td>
<td>Sensitivity specificity</td>
</tr>
<tr>
<td></td>
<td>Unaffected relatives:</td>
<td></td>
</tr>
<tr>
<td>Author Year Country</td>
<td>Study Design</td>
<td>Informant n</td>
<td>Setting</td>
<td>Informant Cancer Status</td>
<td>Informant Male (%)</td>
<td>Informant Mean Age (yr)</td>
<td>Informant Ethnicity or Other</td>
<td>Method of Family History Collection</td>
<td>Cancers Types in Relatives</td>
<td>Method of Verification</td>
<td>Accuracy Metric Reported</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Theis23 1994 Canada</td>
<td>Case series</td>
<td>165</td>
<td>Clinic</td>
<td>Br</td>
<td>0*</td>
<td>median 52</td>
<td>Ethnicity: NR</td>
<td>Self-completed mail questionnaire</td>
<td>Any cancer</td>
<td>Affected relatives: Personal interview</td>
<td>% agreement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Br</td>
<td></td>
<td>31-70</td>
<td>Education: University degree 22% College or vocational training 38%</td>
<td></td>
<td>Unaffected relatives: Cancer registry: A random sample of 1DRs reported as unaffected by cancer submitted to Ontario Cancer Registry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ziogas24 2003 USA</td>
<td>Case series</td>
<td>Br=670 Br Ov=123 Cr=318</td>
<td>Population based & clinic based: included if relative had cancer</td>
<td>Br 60% Ov 11% Cr 29%</td>
<td>15.5</td>
<td>NR</td>
<td>Ethnicity: Non-Hispanic Whites 92%</td>
<td>Telephone interview using structured questionnaire</td>
<td>One syndrome cancers (any cancer): focus on Br, Ov, and colon</td>
<td>Affected relatives: Personal interview, Self-completed survey (site completed), medical record, death certificate</td>
<td>Probability of agreement in relative (yes cancer, no cancer) sensitivity specificity PPV NPV</td>
</tr>
</tbody>
</table>
Table 3 shows the sensitivities and specificities in studies that evaluated the status of both reportedly affected and reportedly unaffected relatives, where sufficient data were presented to compute these. One study22 was excluded from Table 3 as it evaluated accuracy only in terms of “awareness” of parent or sibling’s colorectal cancer. The sensitivity varied by the cancer of interest; for ascertainment of relatives with breast cancer, the range was 85 to 95 percent based on three studies; for colon cancer, 57 to 65 percent (studies using personal interview) and 86 to 90 percent (studies using telephone interview and self report) based on four studies; for ovarian cancer, 67 to 83 percent based on two studies; and for prostate cancer, 69 to 79 percent based on two studies. It is not clear to what extent the verification method of cancer registry versus medical records/death certificates contributed to the ranges observed within a cancer type and between the different cancer types. Similarly, it is difficult to establish how the various methods of collecting family history may have influenced the estimates of sensitivity.

In general, specificity across all cancer types and with varying modes of collection was consistently high, (Table 3). For ascertainment of relatives with breast cancer, the specificities were 95 to 98 percent; for colon cancer, 91 to 92 percent; for ovarian cancer, 96 to 99 percent; and for prostate cancer, 93 to 99 percent.
Table 3. Accuracy for studies evaluating patients who report cancer in first degree relatives in studies that verified the status of both affected and unaffected relatives

<table>
<thead>
<tr>
<th>Study</th>
<th>Population/Recruitment Site</th>
<th>Method of Collection</th>
<th>Criterion Standard</th>
<th>Sensitivity(95%) a/a+c; value</th>
<th>Specificity(95%) d/b+d; value</th>
</tr>
</thead>
</table>
| Anton-Culver20
1996
USA
Case series [cohort] (n=359) | Consecutive cancer patients from either a population based or cancer registry | Telephone interview trained interviewers (interviewers’ background NR)
Paper and electronic collection
Format: Structured interview organized in tables to collect status of 1DRs and 2DRs | Cancer registry | 54/60; [0.90] (0.79-0.96) | 364/369; [0.98] (0.97-1.00) |
| Kerber13
1997
USA
Case-control (cases =125, controls=206) | Population based cases with diagnosed colon cancer, controls from Diet, Activity, and Reproduction in Colon Cancer study (DARCC) | Personal interview (interviewers’ background NR)
Electronic medium collection
Format: Structured interview with tables and codes to access information | Utah population database; Cancer registry | 11/13; [0.85] (0.55-0.98) | 107/112; [0.95] (0.90-0.98) |

Abbreviations: Br=breast; Ov=ovarian; Cr=colorectal; 1DR=first degree relative; 2DR=second degree relative; NR=not reported; PCP=primary care provider
Table 3. Accuracy for studies evaluating patients who report cancer in first degree relatives in studies that verified the status of both affected and unaffected relatives (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Population/Recruitment Site</th>
<th>Method of Collection</th>
<th>Criterion Standard</th>
<th>Sensitivity(95%) a/a+c; value[]</th>
<th>Specificity(95%) d/ b+d; value []</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziogas²⁴ 2003 USA Case series (n=1111)</td>
<td>Recruited from population based and clinic based family registries of Br, Ov and Cr cancer patients from Orange County</td>
<td>Telephone interview (interviewers' background NR) Electronic collection entered into Genetics Registry System (GRIS) Format: pedigree produced by GRIS</td>
<td>Confirmation in at least one of the following: (1) Medical records (pathology reports, tumour tissue samples, or clinical record), or (2) self report from affected and unaffected relatives of informants, or (3) death certificates of deceased relatives</td>
<td>188/197; [0.95] (0.91-0.98)</td>
<td>850/873; [0.97] (0.96-0.98)</td>
</tr>
<tr>
<td>Kerber¹³ 1997 USA</td>
<td>As above</td>
<td>Personal interview (interviewers' background NR)</td>
<td>Cancer registry</td>
<td>11/17; [0.65] (0.38-0.86)</td>
<td>98/108; [0.91] (0.84-0.95)</td>
</tr>
<tr>
<td>Ziogas²⁴ 2003 USA</td>
<td>As above</td>
<td>Telephone interview (interviewers' background NR)</td>
<td>Medical records, death certificate</td>
<td>174/194; [0.90] (0.84-0.93)</td>
<td>1454/1498; [0.97] (0.96-0.98)</td>
</tr>
</tbody>
</table>
Table 3. Accuracy for studies evaluating patients who report cancer in first degree relatives in studies that verified the status of both affected and unaffected relatives (continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Population/Recruitment Site</th>
<th>Method of Collection</th>
<th>Criterion Standard</th>
<th>Sensitivity(95%) a/a+c; value[]</th>
<th>Specificity(95%) d/ b+d; value []</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitchell14 2004 UK Case control study n=199 cases, 133 controls</td>
<td>Cancer patients and community controls (from general practice lists in the same county and some spouses of affected cancer patients)</td>
<td>Personal interview by genetics nurse Paper collection; family history recorded in a structured proforma Format: Pedigree Cancer registry (record linkage with discharge data, cancer registry, and cause of death)</td>
<td>30/53; [0.57] (0.43-0.69)</td>
<td>1256/1269; [0.99] (0.98-0.99)</td>
<td></td>
</tr>
<tr>
<td>Aitken19 1995 Australia Case control study (cases=74, controls=163)</td>
<td>Patients from PCP setting who had undergone colonoscopy Self report (mail survey) Paper collection Format: self report questionnaire with tables for information on 1DRs only Medical record, death certificates</td>
<td>70/81; [0.86] (0.77-0.93)</td>
<td>219/239; [0.92] (0.87-0.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kerber13 1997 USA</td>
<td>As above</td>
<td>Personal interview (interviewers’ background NR Cancer registry</td>
<td>2/3; [0.67] (0.09-0.99)</td>
<td>117/122; [0.96] (0.91-0.99)</td>
<td></td>
</tr>
<tr>
<td>Ziogas24 2003 USA</td>
<td>As above</td>
<td>Telephone interview (interviewers’ background NR) Medical records, death certificate</td>
<td>35/42; [0.83] (0.69-0.93)</td>
<td>1017/1028; [0.99] (0.98-0.99)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Study Population/Recruitment Site</td>
<td>Method of Collection</td>
<td>Criterion Standard</td>
<td>Sensitivity (95%) a/a+c; value []</td>
<td>Specificity (95%) d/b+d; value []</td>
</tr>
<tr>
<td>-------</td>
<td>----------------------------------</td>
<td>----------------------</td>
<td>--------------------</td>
<td>-------------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Prostate Cancer in Relatives</td>
<td>Kerber13 1997 USA</td>
<td>As above</td>
<td>Personal interview (interviewers’ background NR)</td>
<td>Cancer registry</td>
<td>11/16; [0.69] (0.41-0.89)</td>
</tr>
<tr>
<td>Prostate Cancer in Relatives</td>
<td>Ziegas24 2003 USA</td>
<td>As above</td>
<td>Telephone interview (interviewers’ background NR)</td>
<td>Medical records, death certificate</td>
<td>46/58; [0.79] (0.67-0.89)</td>
</tr>
</tbody>
</table>
There were three case control studies that therefore allowed for comparison of reporting accuracy between cases and controls. They all involved cases who were patients with colorectal cancer, and controls who did not have cancer. The first study suggested that cases were slightly more accurate than controls (82 percent vs. 76 percent) in reporting history of colorectal cancer in relatives. The second indicated a sensitivity of 57 percent (95 percent CI 43-69) in cases compared with 53 percent (95 percent CI 31-74) in controls in reporting relatives with colorectal cancer. Within this study, the corresponding specificities were 99 percent (95 percent CI 98-99) in both cases and controls. The third study compared cases and controls with respect to accuracy of reporting several cancer types in their relatives: (1) sensitivity of reporting relatives’ breast cancer – cases 85 percent (95 percent CI 55-98), controls 82 percent (CI NR); (2) sensitivity of reporting relatives’ colorectal cancer – cases 65 percent (95 percent CI, 38-86), controls 81 percent (CI NR); (3) sensitivity of reporting relatives’ ovarian cancer – cases 67 percent (95 percent CI, 9-99), controls 50 percent (CI NR); and (4) sensitivity for reporting relatives’ prostate cancer – cases 69 percent (95 percent CI, 41-89), controls 70 percent (CI NR). The corresponding specificities were: 1) relatives’ breast cancer status - cases 98 percent, controls 91 percent; 2) relatives’ colorectal cancer status – cases 91 percent, controls 94 percent; 3) relatives’ ovarian cancer status – cases 96 percent, controls 98 percent; and 4) relatives’ prostate cancer status – cases 93 percent, controls 94 percent. Taken together, these data suggest broadly similar specificities across the reporting of cancer types and between cases and controls – i.e., generally, the participants with and without cancer themselves were fairly good at correctly identifying relatives without a history of cancer, irrespective of the specific cancer family history being enquired about. In contrast, the sensitivities were generally lower, meaning that informants appeared to miss some cancers in affected relatives; the highest sensitivities were seen for reporting relatives’ history of breast cancer. The results also suggested some differences in sensitivities of reporting between cases and controls – controls being more likely than cases to miss colorectal and ovarian cancers in relatives. In addition, the data from this study would suggest differences in sensitivities such that controls are more accurate for colorectal cancer but less accurate for ovarian cancers. In contrast, the specificities were similar for the cancers evaluated, suggesting no difference between cases and controls with respect to their accuracy in identifying who of their relatives does not have specific cancers. These observations are based on a single study and therefore should be interpreted cautiously.

Studies With Verification in the Affected Relatives Only. Table 4 shows the eight studies (nine publications) that verified the cancer status only of relatives reported to be affected by cancer. A single study (two publications) was a case control design and the remaining were case series. Two studies involved participants who did not have cancer but who were at high risk for breast or colorectal cancer. Two studies involved patients who had prostate cancer, and one study involved colorectal cancer patients; one study combined Li-Fraumeni Syndrome (LFS) and Hereditary Breast-Ovarian Syndrome (HBOCS) (both women at genetic high risk and some with cancer) and one study (two papers) involved women with breast cancer. A single study involved a range of participants with and without cancer.

Five studies assessed the informant’s ability to report any cancer within relatives, and the remaining studies appeared to assess reporting of relative’s breast cancer or prostate cancer history. In general, informant characteristics such as mean age, ethnicity, or education were poorly reported. Similarly, characteristics of the relatives were also poorly reported (Table 4).
<table>
<thead>
<tr>
<th>Author Year Country</th>
<th>Study Design</th>
<th>Informant n</th>
<th>Setting</th>
<th>Informant Cancer Status</th>
<th>Informant Male (%)</th>
<th>Informant Mean Age (yr)</th>
<th>Informant Ethnicity or Other</th>
<th>Method of Family History Collection</th>
<th>Cancers types in relatives</th>
<th>Method of Verification</th>
<th>Accuracy Metric Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent 10, 11, 1995, 1997 Canada</td>
<td>Case Control</td>
<td>Sampled Ca 414 Co 429 Positive history Ca 68 Co 37</td>
<td>Clinic</td>
<td>Br</td>
<td>Ca 0 Co 0</td>
<td>Age for those reporting positive history 59 (30-79)</td>
<td>Ethnicity: NR except French speaking 100% and, born in Canada 97%. Education: Post high school 68%</td>
<td>F to F structured interview for 1DRs only</td>
<td>Br</td>
<td>Affected relatives: Medical record of 1DR</td>
<td>OR Mean difference in errors</td>
</tr>
<tr>
<td>Schneider 12, 2004 USA</td>
<td>Case Series</td>
<td>Family history of LFS 32 HBOCS 52</td>
<td>Clinic</td>
<td>LFS group are cancer free HBOCS both with and without Br or Ov cancer</td>
<td>LFS 47 HBOCS 28 LFS 72<40 HBOCS 40<40</td>
<td>Ethnicity: White:84.5% Education: LFS some college education 59%, HBOCS some college education 91%</td>
<td>Self-completed survey; interview type NR</td>
<td>All cancers</td>
<td>Affected relatives: Medical record; death certificate documented cancer histories often comprised four generations. Efforts were made to confirm all cancers in the extended pedigrees.</td>
<td>% agreement overall and as a function of cancer site. OR to predict accuracy</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Ca=cases; Co=controls; Br=breast; Ov=ovarian; Cr=colorectal; 1DR=first degree relative; F to F=face to face; LFS = Li-Fraumeni Syndrome; HBOCS=hereditary breast-ovarian cancer syndrome; NR=not reported; NPV=negative predictive values; PPV=positive predictive values; OR=odds ratio.

* not specified but likely all female subjects due to the type of disease.
Table 4. Study and patient characteristics of studies evaluating the accuracy of reporting verified in the affected relatives only (continued)

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Study Design</th>
<th>Informant n</th>
<th>Setting</th>
<th>Informant Cancer Status</th>
<th>Informant Male (%)</th>
<th>Informant Mean Age (yr)</th>
<th>Informant Ethnicity or Other</th>
<th>Method of Family History Collection</th>
<th>Cancers Types in Relatives</th>
<th>Method of Verification</th>
<th>Accuracy Metric Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breuer</td>
<td>1993</td>
<td>USA</td>
<td>Case series</td>
<td>166</td>
<td>Clinic</td>
<td>Cancer free but high risk for Br</td>
<td>0</td>
<td>Median 40</td>
<td>Ethnicity: White 86-95%</td>
<td>Self-completed questionnaire administered prior to 1st breast exam at cancer prevention centre</td>
<td>Br</td>
<td>Affected relatives: Personal interview; Medical record</td>
<td>Kappa for laterality of Br cancer (one versus both breasts) % agreement</td>
</tr>
<tr>
<td>Katballe</td>
<td>2001</td>
<td>Denmark</td>
<td>Case series</td>
<td>87 had relatives with cancer from 1,200 surveyed</td>
<td>Clinic</td>
<td>Cr</td>
<td>NR</td>
<td>NR</td>
<td>Interview by surgeons</td>
<td>All cancers (Amsterdam criteria)</td>
<td>Affected relatives: Medical record; cancer registry; death certificate.</td>
<td>Proportion True positive rates</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Study and patient characteristics of studies evaluating the accuracy of reporting verified in the affected relatives only (continued)

<table>
<thead>
<tr>
<th>Author Year Country</th>
<th>Study Design</th>
<th>Informant n</th>
<th>Setting</th>
<th>Informant Cancer Status</th>
<th>Informant Male (%)</th>
<th>Informant Mean Age (yr)</th>
<th>Informant Ethnicity or Other</th>
<th>Method of Family History Collection</th>
<th>Cancers Types in Relatives</th>
<th>Method of Verification</th>
<th>Accuracy Metric Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kupfer²⁷ 2006 USA</td>
<td>Case series</td>
<td>139 Clinic</td>
<td>Cancer free but high risk for Cr</td>
<td>32 NR</td>
<td>Ethnicity: White 66%, Black 27%, Hispanic 6%, Asian < 1%</td>
<td>Telephone interview</td>
<td>All cancer (significant cancers)</td>
<td>Affected relatives: Medical record: verification of cancer histories was done by reviewing pathology and operative reports, hospital admission and discharge summaries, Death certificate: death certificate and autopsy reports when available.</td>
<td>Chi Square testing differences between groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaff²⁵ 2004 Australia</td>
<td>Case series</td>
<td>141 husbands from 301 68 wives from 85 Population based</td>
<td>Prostate</td>
<td>100 husbands 0 wives</td>
<td>58 NR except only 8% were born in Australia Education: Diploma or degree 21%</td>
<td>F to F personal interview. Self-completed survey (mail)</td>
<td>Prostate</td>
<td>Affected relatives: Relatives' medical record.</td>
<td>OR for accuracy and completeness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>King²⁷ 2002 USA</td>
<td>Case series</td>
<td>143 from 422 Clinic Prostate</td>
<td>100 80% older than 60 yr</td>
<td>Ethnicity: White 98%, Education: Post high school education 71%</td>
<td>Personal structured interview: (not reported if done F to F or by telephone)</td>
<td>All cancers</td>
<td>Affected relatives: Relatives' medical record.</td>
<td>% agreement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author Year Country</td>
<td>Study Design</td>
<td>Informant n</td>
<td>Setting</td>
<td>Informant Cancer Status</td>
<td>Informant Male (%)</td>
<td>Informant Mean Age (yr)</td>
<td>Informant Ethnicity or Other</td>
<td>Method of Family History Collection</td>
<td>Cancers Types in Relatives</td>
<td>Method of Verification</td>
<td>Accuracy Metric Reported</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Sijmons 2000</td>
<td>Case series</td>
<td>129 120 families</td>
<td>Clinic</td>
<td>Br, Ov, or Cr.</td>
<td>NR</td>
<td>NR</td>
<td>Ethnicity: NR Education: NR</td>
<td>Pedigree</td>
<td>All cancers</td>
<td>Contact with living relatives*, medical records (including pathology reports)</td>
<td>% agreement</td>
</tr>
</tbody>
</table>
The methods of family history collection varied with face-to-face interviews used in three
studies (four papers), telephone interviews in one study, interview with mode not
reported in one study, survey completed in the clinic in one study, and mailed survey in two
studies. The methods of verification of the relatives actual cancer status included:
(1) personal or telephone interview with relatives and medical records, (2) relatives’ medical
chart records alone, and (3) a combined strategy (medical record or cancer registry or
death certificate).

From five studies that reported on the informant’s ability to report any cancer within
relatives, only two studies provided information on the percent agreement as a function of the
cancer reported. One study indicated that breast and colorectal cancers had 93 percent and 89
percent agreement and lower rates of agreement for other cancers (42 percent for extra-colorectal
alimentary tract and 37 percent uterine cancer). Another study showed similar results with
higher percent agreements for breast, colon, and prostate cancer (95, 92, and 86 percent
respectively) in patients with prostate cancer. One study who evaluated subjects with LFS and
HBOCS found differences in the accuracy of reporting, with 85 percent agreement and 92
percent agreement with the reported cancers within their relatives.

Two studies reported on the accuracy of breast cancer within relatives and the percent
agreement varied from 89 percent in one study (with greater accuracy in living relatives with
unilateral disease 94 percent) to a sensitivity of 90 percent (CI 95 percent 81-96) in a second
study. The specificity for this latter study was estimated at 3 percent suggesting errors in
reporting of unaffected relatives. One study reported 90 percent agreement for relatives with
prostate cancer. Another study reported on the accuracy of colorectal cancer in relatives, with
a sensitivity of 61 percent (CI 95 percent 36 – 83) and a specificity of 96 percent (CI 95 percent
88-99). Although, the magnitude of the agreements are generally high for reporting on some
cancers, caution should be used when interpreting the results from studies that evaluate accuracy
by confirming the status of the affected relatives only, as these contain errors and bias.

Other Factors That May Affect Reporting Accuracy. A variety of factors which could
potentially influence accuracy of family history reporting were considered in some studies.
Table 5 shows the factors that have been evaluated within some of these studies and, indirectly,
the degree of evidence for each of these. We examined 15 characteristics, although some were
only evaluated in a small number of studies. Those characteristics infrequently evaluated were:
(1) type of first degree relative (1DR), (2) vital status of the relative, (3) number of relatives,
(4) cancer history of interest, (5) cancer type of the informant, (6) race of the informant, (7)
marital status, (8) laterality within breast cancer, (9) population versus clinic setting recruitment,
(10) health insurance status, and (11) gender or age of diagnosis of the relative. It is difficult to
generalize for these factors from this heterogeneous series of studies evaluating informants with
different cancers and reporting on different cancers within their relatives. Moreover, some of the
studies did not actually statistically evaluate differences between the factors of interest; thus,
these findings should be regarded as indicating attributes that could be further evaluated in the
future research.

Eight studies (nine publications) evaluated the effect of age of the informant
on accuracy; no clear trend was observed, and it was not possible to separate any effect of
informant age from the possible effects of their own cancer type, gender, or differences in how
age was categorized.
<table>
<thead>
<tr>
<th>Factors</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrequently evaluated factors</td>
<td></td>
</tr>
</tbody>
</table>
| Type of 1DR (n=2) | 1) Anton-Culver 1996²⁰: Slightly lower sensitivity identifying breast cancer for sisters than mothers when evaluating individuals versus families in informants with breast cancer.
2) King 2002¹⁷: Most accurate for identifying any cancer within brothers, then mothers; accuracy was lowest for fathers and sisters in informants with prostate cancer. |
| Deceased versus living relative (n=1) | 1) Breuer 1993⁸: In informants who were free but high risk for breast cancer, reporting accuracy for laterality was better for living than deceased relatives (higher percent) with breast cancer. |
| Number of relatives within a family of the Informant (n=1) | 1) Breuer 1993⁸: In informants who were free but high risk for breast cancer, there was no statistical difference as a function of the number of affected relatives (p=0.6) with respect to accuracy of reporting laterality of breast cancer. |
| Cancer type/site in relative as identified by the Informant (n=3) | 1) King 2002¹⁷: In prostate cancer informants, the greatest inaccuracies occurred with reporting of bone, liver, and uterus was the most inaccurate.
2) Mitchell 2004¹⁴: In informants with and without colorectal cancer, accuracy was greatest for breast and colorectal and least accurate for bronchus, lung, and stomach.
3) Ziogas 2003²⁴: In informants with cancer (breast, ovarian, or colorectal) the negative predictive values and the probability of not having cancer did not differ as a function of the type of cancer in the relative. This was not the case for the positive predictive value and probability of having cancer, where the type of cancer did affect accuracy. |
| Type of cancer within the Informant (n=1) | 1) Schneider 2004¹²: Age at diagnosis was less accurately reported than cancer sites by LFS relative to HBOCS. Overall, those with HBOCS cancer, were shown to be more accurate in reporting than those with LFS in a multivariate analysis (OR=3.3 p<0.01). |

Abbreviations: 1DR=first degree relative; 2DR=second degree relative; 3DR=third degree relative; HBOCS=hereditary breast-ovarian cancer syndrome; LFS=Li-Fraumeni Syndrome; OR=odds ratio
Table 5. Factors that can influence accuracy of reporting cancer family history (continued)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Main findings</th>
</tr>
</thead>
</table>
| Race of the Informant (n=2) | 1) Kupfer 2006: In cancer free but high risk patients for colorectal cancer, Blacks were more likely to lack knowledge compared to Whites with regards to paternal family history (p<0.05). However, there were no differences with accuracy of maternal history (p<0.9).
2) Ziogas 2003: White informants with cancer (breast, colorectal or ovarian) were more accurate for all cancer sites but not statistically significant for false positive rates relative to other races. |
| Marital Status (n=2) | 1) Aitken 1995: In informants with and without colorectal cancer, marital status had no effect on accuracy or reporting colorectal cancers in relatives.
2) Gaff 2004: In men with prostate cancer, the relationship status (yes or no relationship) made no difference (p=0.32) to reporting prostate cancer within the relatives. |
| Reporting of laterality in Breast cancer (n=2)| 1) Breuer 1993: In informants who are free but at high risk for breast cancer, women reported more accurately relatives with single rather than bilateral cancer (statistically significant, p<0.0005); this was likely confounded by the status of living versus dead relatives. That is unilateral living relatives showed best accuracy and bilateral deceased showed worst for percent correct.
2) Theis 1994: Informants with breast cancer were more accurate in reporting laterality for first degree than second degree relatives; however, the authors noted that some medical records did not actually provide information on laterality. |
| Setting from which Informant was recruited (n=1) | Ziogas 2003: Although majority of sample with cancer (either breast, ovarian, or colorectal) was population based, they showed that clinic based informants were more accurate (less false negatives) than population based sample when reporting on one syndrome cancer within relatives. |
| Health Insurance Status (n=1) | Aitken 1995: In informants with and without colorectal cancer, there was higher accuracy for those with private insurance (p=0.01). |
| Attributes of the Relatives (n=1) | Ziogas 2003: In informants with cancer (breast, ovarian, or colorectal) the gender of the relative or age of diagnosis of the relative were not significant predictors of accuracy; the exception was for prostate cancer where younger age (60-69) of relative did affect accuracy. |
| More frequently evaluated factors | |
| Age of the Informant (n=8) | 1) Aitken 1995: In informants with and without colorectal cancer, accuracy increased with age (p=0.03)
2) Kerber 1997: In informants with and without colon cancer, younger subjects (<66) generally reported family histories of cancer with greater accuracy than older (>67) patients with the exception of female reproductive tact cancers.
3) Mitchell 2004: In informants with and without colon cancer, no differences in accuracy were found due to age.
4) Sijmons 2000: Age did not affect accuracy of reporting both organ and type of disease.
5) Breuer 1993: In informants without but at high risk for breast cancer, older women were shown to be more accurate reporting laterality.
6) Parent 1995, 1997: Age of the informant with and without breast cancer had no effect on the accuracy of the age of diagnosis of the relative (no differences between cases and controls with regards to accuracy +/- 5 yrs); similarly, age was not a factor with the exception of informant over the age of 70, who made more mistakes than those younger.
7) Gaff 2004: Men with prostate cancer and younger than 55 years were more accurate (OR=4.0 (95% CI 1.1-8.1, p=0.03) and more complete in their reporting (OR=3.6 (95% CI 1.6 – 8.4, p=0.03). |
Table 5. Factors that can influence accuracy of reporting cancer family history (continued)

<table>
<thead>
<tr>
<th>Factors</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>8) Ziogas 2003 (^{24}): Younger informants were more likely to have lower false negative rates, particularly for breast (p=0.0008), colon (p=0.027) and prostate (p=0.02).</td>
<td></td>
</tr>
<tr>
<td>1DRs versus 2DRs or 3DRs (n=6)</td>
<td>1) Gaff 2004 (^{15}): Informants with prostate cancer were more accurate reporting prostate cancer in 1DRs (OR 4.0 (95% CI 1.2-10.7, p < 0.0006) and more complete in their reporting (OR = 12.7 (95% CI 6.0-27.1, p< 0.001) compared to reporting for 2DRs or 3DRs).
2) Mitchell 2004 (^{14}): Better sensitivity to detecting any cancer for 1DRs of informants with colorectal cancer; however, there were fewer 2DRs identified overall.
3) Schneider 2004 (^{12}): Multivariate analysis showed more accurate for reporting any cancer within 1DRs (OR = 0.2, p < 0.01) in informants with LFS or HBOCS.
4) Theis 1994 (^{23}): The reporting of the age of diagnosis for any cancer within relatives was more accurate for 1DRs than 2DRs in informants with breast cancer; this improved if age categories were dichotomized to above or below 50 yrs. Informants with breast cancer were more accurate for laterality for 1DRs than 2DRs. The authors did note that it was more difficult to obtain records for 2DRs overall.
5) Ziogas 2003 (^{24}): Informants with cancer (breast, ovarian or colorectal) showed better positive predictive, negative predictive and % agreement was for 1DRs versus 2DRs. Conversely, there was greater risk of over-reporting in 1DRs rather than 2DRs.
6) Sijmons 2000 (^{18}): The degree of kinship (closer relatives) improved the accuracy of reporting accuracy of age at diagnosis.</td>
</tr>
<tr>
<td>Gender of the Informant (n=6)</td>
<td>1) Aitken 1995 (^{19}): Informants with or without colorectal cancer showed no statistically significant differences with regards to gender.
2) Mitchell 2004 (^{14}): Informants with and without colorectal cancer showed no difference in accuracy due to gender.
3) Kerber 1997 (^{13}): In informants with or without colorectal cancer there was some evidence that women reported more accurately for ovarian cancer, but not much difference for other types of cancers.
4) Kuper 2006 (^{7}): Men who are free of colorectal cancer (but at high risk) were more likely to lack knowledge of family history relative to women. Of those that lacked family history, men were more likely to lack paternal history compared to women (p<0.01). No difference in the maternal family history between men and women.
5) Ziogas 2003 (^{24}): Male informants with cancer (type not specified) were more likely to over-report cases that were not true for all cancers compared to females.
6) Sijmons 2000 (^{18}): There was no evidence that gender affected accuracy of reporting organ and type of cancer.</td>
</tr>
<tr>
<td>Education Level of the Informant (n=5)</td>
<td>1) Aitken 1995 (^{19}): Informants with or without colorectal cancer showed no statistically significant differences with regards to education level.
2) Gaff 2004 (^{15}): Education level not significant for accuracy or completeness in informants with prostate cancer.
3) Kerber 1997 (^{13}): Education level had no influence on sensitivities or level of agreement in informants with or without colorectal cancer; however, those with college education were more likely to report breast and prostate cancer more accurately.
4) Parent 1995, 997 (^{10,11}): Women with or without breast cancer showed no difference in accuracy due to education level.
5) Schneider 2004 (^{12}): Higher education level OR=2.2, p<0.01 increased accuracy in women with LFS or HBOCS.</td>
</tr>
</tbody>
</table>
Six studies7,13,14,18,19,24 evaluated the effect of the informant’s gender on accuracy, and suggested no general effect. One study13 suggested that women might be more accurate in correctly identifying relatives who had ovarian cancer. Another7 suggested that there were gender differences in knowledge of paternal versus maternal family history. A third24 suggested that men may over-report cancers compared to women.

Six studies12,14,15,18,23,24 evaluated whether accuracy varied with the degree of relative whose status was being reported; there was a consistent trend towards increased accuracy of reporting for 1DRs compared to second degree relatives (2DR) or third degree relatives (3DRs) (Table 5). Several studies14,23 noted challenges in confirming the true status of 2DRs and also that fewer 2DR and 3DRs were identified overall, suggesting the potential for reporting and confirmation biases.

Five studies (six publications)10-13,15,19 evaluated the effect of education level using a variety of categorizations; all but one study12 showed an effect on accuracy of reporting.

Quality Assessment of Studies

We evaluated quality of the accuracy studies at several different levels. At one level, we considered that the method by which the cancer status of the relatives was evaluated was of great importance in determining accuracy of reporting. At another level, we applied traditional internal validity criteria for study designs that included a comparison group or were considered diagnostic in their design. Since so few of the studies were of traditional study design with control groups, the majority of standardized assessment scales could therefore only be applied to a subset of papers. If we considered all the studies as “diagnostic” in their design, the QUADAS (a quality assessment scale for diagnostic studies) could be applied to most studies. However, not all 14 criteria (or biases) applied to the “diagnostic test” of “family history collection” were relevant in the context of accuracy of reporting; we selected three criteria from the QUADAS to compare the different studies.

Methodological Issues in the Verification of the Cancer Status of the Relatives. For accuracy of family history reporting, we considered verification of the status of both the affected and unaffected relatives to be of the highest quality. Studies that verified the status of the affected relatives only were considered to be of lesser quality or more susceptible to bias with respect to accuracy of reporting.

A number of difficulties were identified by authors with regards to ascertaining the cancer status of the relatives. The range of estimates of difficulties in obtaining some type of confirmation varied from 31 percent19 to 9 percent21. Some of the difficulties with verification of cancer status of the relative included: (1) errors in medical records or pathology reports,8,21 (2) death of relative prior to registry formation or other form of record keeping,21 (3) relative emigrated to another geographic region, for which medical records were not available to the researchers,8,21 (4) informants provided incorrect address or contact information for hospitals where relatives were treated,8 (5) retrieval of death certificate information was impossible due to peculiar national laws affecting access by researchers or it was certain the files had been destroyed,18 (6) some difficulty obtaining medical records of fathers compared to brothers, mothers, and sisters,17 (7) reports concerned relatives for a branch of the family not of interest to the genetic investigation,18 (8) the reported cases were late onset common type tumors in distant relatives not likely of interest in the referral,18 and (9) informants were not in touch with the relatives concerned, so consent could not be obtained.18 Some studies found it difficult to obtain
medical records of deceased relatives when recruitment of relatives for consent depended upon the informants' contact. There was some suggestion that verification rates were lower among negative relatives as these tended to have less physician visits. Studies undertaken in countries with longstanding national cancer and death registries linked with service provision databases, tended to report very high rates of retrieval (97-98 percent) of verification of diagnoses on relatives.

Although there were a variety of possible factors that impeded verification of the cancer status of the relative, not all studies excluded from the analysis those informants or relatives for which there were some difficulties in complete confirmation. Note that many studies did not compare the characteristics of the informants who did not wish to contact relatives for their medical records relative to those that did; similarly, comparisons between those relatives that provided consent to medical records and those that did not were not consistently undertaken.

QUADAS Assessment of Methodological Quality for Diagnostic Studies. We applied the QUADAS to those studies that verified the status within their relatives. The QUADAS, a 14 item quality assessment scale for diagnostic studies, was used to evaluate all studies eligible for accuracy of reporting. From these items, three were considered to be of greatest relevance to identifying potential biases within these studies that considered the collection of family history as the “diagnostic test” of interest and the method of verification as the “reference test”. The first challenge was to assume that the “diagnostic test” was the same method of family history collection, in order to compare ratings across studies; clearly, the tools or methods used to collect family history varied significantly amongst studies. The second assumption, we made was that the reference standards specified within each study were equivalent across studies; that is that cancer registry verification and death certificate verification were equivalent.

Three items from the QUADAS were selected to evaluate spectrum bias, verification bias (both differential and partial), and blinding of those who verified the cancer status of the relatives. If present within the studies, each of these biases will result in overestimation of accuracy.

Spectrum Bias. The first question within the QUADAS asks: Was the spectrum of patients’ representative of the patients who will receive the test in practice? Theoretically, being asked to take the “test” of cancer family history collection may be received by any person (with or without cancer) in clinical practice. Thus, it was challenging to define which informants are not “typical” of those likely to be tested in practice.

We would indicate the presence of spectrum bias, when the study population did not reflect the spectrum of informants likely to be seen within the clinical setting. For example, patients recruited due to their high risk for familial cancer syndromes would not reflect the spectrum of patients who would report cancer “family history”, albeit they are an important group to evaluate. Similarly, in those studies with informants with cancer of differing severity or who were differentially assigned to study groups, the likelihood of spectrum bias is evaluated as high. We considered a sufficient spectrum of disease should include participants who reflect a complete range of staging (severity) of their cancer if the informant had cancer when the family history was collected. Additionally we believe that an adequate spectrum should reflect informants that included both genders in those studies that did not affect sex-specific organs, such as ovaries or prostate.

When considering the eight studies that verified the status of both the affected and unaffected relatives, the potential for spectrum bias was evident. In general, these studies did not report information on the informants with respect to the severity of disease. One case control study
specified that the cases were “first primary cases” while the others of the same study design did not specify; however, there is still potential for spectrum bias in these studies. One of the studies evaluating breast cancer informants included women of restricted age (< 40 yrs), one third of subjects with bilateral breast cancer, referred to university hospital oncology centre. Another included informants that were English speaking, North American born, without brain metastases and had a least one 1DR with breast cancer. Both these studies, although they reflect patients likely to be seen in cancer clinics, do not represent the spectrum of breast cancer patients and therefore these studies have spectrum bias.

When considering those studies that evaluated the status of the affected relatives alone, the potential for spectrum bias was also evident. Two studies recruited cancer free informants who were at very high risk for familial cancers due to a history of 1DRs already diagnosed with the cancer of interest. For the remaining studies, the severity of cancer within the informants was not detailed. This suggests the potential for spectrum bias.

Verification Bias. The fifth question within the QUADAS asks: Did the whole sample or a random selection of the sample, receive verification using a reference standard? Partial verification bias occurs when not all members of the study group receive confirmation of the diagnosis by the reference standard. Similarly, differential verification bias can occur if a subgroup of patients is given a different reference standard test. Partial verification bias can occur if some of the relatives identified by the informant did not have their cancer status verified. Even in studies where both affected and unaffected relatives were evaluated, we did observe that some studies were not able to verify the status of some of the relatives for many of the reasons stated above. One study, (which employed very rigorous ascertainment methods of reportedly affected relatives, even sending notes to hospitals overseas for determining the status of deceased relatives), indicated that they did not attempt to check the medical record of all relatives who were cancer free (the overwhelming majority). Other studies limited their evaluation or reporting to 1DR only; this in itself may reflect a type of differential verification bias in that not all relatives reported by the informants were verified. In those studies that evaluated only the affected relatives, clearly partial verification bias was present. The presence of partial or differential biases may lead to overestimation of accuracy.

Blinding of Those Verifying Cancer Status in Relatives to the Status of the Informant. The eleventh question of the QUADAS states: Were the reference standard results interpreted without knowledge of the results of the index test? In the context of family history collection, our interest was in having those who verified the status of the relatives blinded to the cancer status of the relative and possibly the informant. It is possible that the research assistant extracting the cancer status of the relative, having knowledge of their cancer status, might interpret information (for example, from medical charts) differently than if they were not aware of the cancer status of the relative. Problems with lack of blinding may be less likely to occur in studies that use linkages with cancer or hospital registries; presumably the criteria for verification are not dependent on interpretation by a research assistant. However, there are errors associated with linking databases.

Of the eight studies that evaluated the status of both affected and unaffected relatives, three relied solely on linkages with cancer or population health registries, and one on patient report or health records alone; the remaining four studies used a combination of interview, health records and death registries. For those studies that evaluated the affected relatives alone, a single study used computerized linkage alone with patient records to ascertain
the status of the relative. Overall, blinding of the status of the relative or the informant was not undertaken in the majority of studies.

Methodological Quality Assessment for Case Control Studies. We applied traditional internal validity criteria to the four case control studies (five publications),10,11,13,14,19 using the Down’s and Black standardized quality assessment scale.105 One study19 originated as a case control study but undertook a sample from the original to perform a validation study on accuracy of reporting; informants were selected on the basis of having relatives with cancer rather than their cancer status. We did not evaluate the quality of this study using the Down’s and Black scale. The range of composite quality scores varied between 14 and 17 (from a possible score of 23), indicating a moderate level of quality for the three case control studies. One of the main methodological flaws was the omission of descriptions of the distribution of principal confounders in two of the studies (three publications)10,11,13. In addition, only one study13 enrolled subjects who appeared to be representative of the general population from which they were recruited and only one study (two publications)10,11 indicated that cases and controls were recruited over the same time period. It was impossible to tell, based on the information contained in the studies, whether cases and controls were recruited from the same source population. There was insufficient information in all four studies to assess blinding, but all studies had reports of losses to follow up. The authors of one study12 adjusted for potential confounders in the analysis.

The potential for selection or information bias in these four case control studies is difficult to assess. The lack of reporting on recruitment and blinding does not necessarily mean that the authors ignored these issues. It is possible that all subjects were recruited from the same source population and all subjects and investigators were blinded. The authors may simply not have reported this information in the published manuscripts.
Table 6. Study and patient characteristics of studies evaluating reliability

<table>
<thead>
<tr>
<th>Author Year Country</th>
<th>Study Design</th>
<th>Informant n</th>
<th>Setting</th>
<th>Informant Cancer Status</th>
<th>Informant Male (%)</th>
<th>Informant Mean Age (yr)</th>
<th>Informant Ethnicity or Other</th>
<th>Method of Family History Collection</th>
<th>Cancers Types in Relatives</th>
<th>Method of Verification</th>
<th>Accuracy Metric Reported</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acheson42 USA 2006</td>
<td>Case series</td>
<td>151 from 755 61 for reliability testing</td>
<td>Clinic Mixed cancers</td>
<td>7</td>
<td>41</td>
<td>Ethnicity: White 85%, Black 6%, Native American 10%, Hispanic 4%, Ashkenazi Jewish 16% Education: Some college 51%, Advanced degree 26%, High school 23%</td>
<td>Genetic Risk Assessment Tool (GREAT) and genetic consultation</td>
<td>Not specified</td>
<td>Not applicable: evaluated on test-retest reliability in sub-sample of 61 participants</td>
<td>% agreement Correlation</td>
<td>Some completed the questionnaire after genetic consultation</td>
<td></td>
</tr>
<tr>
<td>Geller9 USA 2001</td>
<td>Case series</td>
<td>33 from 50 Population based Cancer free</td>
<td>0</td>
<td>48% (34-64)</td>
<td>Ethnicity: White 100% Education: Some college or greater 82%</td>
<td>Telephone interview</td>
<td>Breast and Ovarian</td>
<td>Affected relatives: Personal interview (telephone), Cancer registry: Vermont Breast cancer surveillance system. Unaffected relatives: As for affected relatives</td>
<td>Test-retest reliability coefficient.</td>
<td>Only 27% of relatives agreed to release information.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Ca=Cases; Co=controls; 1DR=first degree relative; 2DR=second degree relative; F to F=Face to face; LFS=Li-Fraumeni Syndrome; HBOCS=hereditary breast-ovarian cancer syndrome; NR=not reported; OR=odds ratio

* not specified but likely all female subjects due to the type of disease
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Study Design</th>
<th>Informant n</th>
<th>Setting Informant Cancer Status</th>
<th>Informant Male (%)</th>
<th>Informant Mean Age (yr)</th>
<th>Informant Ethnicity or Other</th>
<th>Method of Family History Collection</th>
<th>Cancers Types in Relatives</th>
<th>Method of Verification</th>
<th>Accuracy Metric Reported</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weinrich</td>
<td>2002</td>
<td>USA</td>
<td>Case series</td>
<td>159 time 1, 100 time 2</td>
<td>Population</td>
<td>Prostate</td>
<td>100</td>
<td>50.4</td>
<td>Ethnicity: African American 100% Education: Some college or above 47%</td>
<td>Interview F to F time 1 and telephone time 2</td>
<td>Prostate</td>
<td>Affected relatives: Medical record</td>
<td>Unaffected relatives: NR</td>
</tr>
</tbody>
</table>
Question 2: Improvement of Family History Collection by Primary Care Professionals Through the Use of Forms and Tools

Studies Reviewed

A total of 39 different tools, implemented in 40 unique studies, and reported in 45 publications passed full text criteria. Our initial focus was on identifying studies that described FHxTs developed or used in a primary care setting; however, after careful review, we noted that many studies described tools used in other settings that appeared potentially relevant to primary care (criteria for “primary care applicability” is outlined in Chapter 2). We also sent email queries to all authors of eligible studies that did not provide sufficient detail of the FHxT or a copy of the tool. Fifteen authors (of 16 publications) did not respond in time for the publication of this review and therefore we were unable to determine whether the reported FHxT was applicable for use within primary care. For those studies for which we evaluated the FHxT, six tools from seven publications were assessed as inappropriate for primary care; all of these had been developed and used in research settings. The scoring system and scoring of actual FHxTs is displayed in Appendix B.* Of the remaining 22 publications, four described the prototype and final versions of the same FHxT (RAGS/GRAIDS), which we counted as a single tool; and two were companion publications. Thus, 18 distinct tools, from 22 publications, were identified as being applicable to primary care settings (Figure 4). Full study details are summarized in the evidence table (Appendix C, Table 2).

Figure 4. Flow of accuracy studies

*Appendixes cited in this report are provided electronically at http://ahrq.gov/clinic/tp/famhisttp.htm
Description of Tools

Target User. Fourteen tools\(^{42-55}\) were designed for completion by patients, and four tools (eight publications)\(^{36-41,56,57}\) were designed for use by health professionals.

Format. Eleven tools\(^{43,45-49,51-55}\) were paper-based, generally in some form of questionnaire or structured questions. Four tools (eight publications)\(^{36-41,44,50}\) were presented in a form for use on a desktop or laptop computer, including web-based and touch screen applications, and one on a personal digital assistant.\(^{57}\) One tool\(^{42}\) was an automatic telephone interview, and one was a structured interview schedule.\(^{56}\)

Cancer Type. Fifteen tools, reported in nineteen articles,\(^{36-43,45-50,52,53,55-57}\) were designed to collect data on family history of breast or breast/ovarian cancer. Nine tools (ten publications)\(^{40-42,46-50,52,57}\) captured data on colorectal cancer and two\(^{40,41}\) tools (three publications)\(^{40-42}\) on prostate cancer. Five tools (six papers)\(^{36,37,42,47,48,57}\) also captured data on one or more additional cancer types. For two,\(^{51,54}\) the tool appeared to invite information on any cancer type.

Clinical Setting. Four tools (seven publications)\(^{36-39,48,49,56}\) described tools which were implemented in family practice settings, and four tools\(^{46,52,54,57}\) in internal medicine clinics. One tool\(^{47}\) was implemented in a gastrointestinal clinic, and another\(^{45}\) in a screening mammography setting. Three tools\(^{46,54,55}\) were designed for use in cancer centers or clinics and three\(^{42-44}\) were implemented in genetic clinics. One tool (two publications)\(^{40,41}\) was web-based and designed for use by any health professional, and the remaining tool\(^{53}\) was used in a large population-based research study. The published reports indicated that eight of the tools were used in a proactive way,\(^{46,48,49,51,52,54,55,57}\) eight (12 papers) in a reactive manner,\(^{36,38-41,43-45,47,53,56}\) and two in a mixed approach.\(^{42,50}\)

Links to Risk Assessment Tools. The output of five tools (nine publications)\(^{36-41,44,45,57}\) was linked directly to some form of defined risk assessment tool (RAT) (i.e., the family history data were converted directly into a risk categorization), although several of the publications describing other tools also described companion RATs.

Content of FHxTs. Fourteen tools\(^{36-39,42-45,47-52,54-56}\) reported in seventeen publications, were designed to capture data on all, or selected, 1DRs. Eleven tools (fourteen papers)\(^{36-39,42,44,45,47,49,50,52,54-56}\) were designed to capture data on all or some 2DRs, and one\(^{49}\) on grandparents only. Five tools\(^{42,44,45,50}\) explicitly went beyond 2DRs, although not necessarily to capture all 3DRs. For the remaining tools, the extent of family history enquiry was not explicitly described. For all tools except five\(^{48,51,53,55-57}\) there were explicit instructions for users to capture data on relatives on both sides of the family. Two tools\(^{49,54}\) were designed to explicitly capture ethnicity data. Further details of the data captured are presented in Summary Table 7.

Other Family History Tools. Eleven web-based FHxTs were also identified during the grey literature search. Nine tools were actually available from the web, and these are listed with relevance scores in Appendix B.* For all except one, (JamesLink)\(^{50}\) which was included in the main review, no information was provided on their development or evaluation, which precluded their inclusion in the main review. The highest scoring of these tools for applicability to primary care were the Family History Tool developed by American Academy of Family Practice\(^{107}\) and the U.S. Surgeon General’s Family History Initiative.\(^{108}\)

* Appendixes cited in this report are provided electronically at http://ahrq.gov/clinic/tp/famhisttp.htm
<table>
<thead>
<tr>
<th>Paper</th>
<th>Tool</th>
<th>Cancer(s)</th>
<th>Target User</th>
<th>Medium, Form of Questions</th>
<th>Direct/Automated Pedigree Output</th>
<th>Degree of Relatives Covered</th>
<th>Side of Family Covered</th>
<th>Data on Unaffected Relatives</th>
<th>Automatic/Direct Risk Assessment Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hurt⁵⁵</td>
<td>Family history questionnaire</td>
<td>Breast</td>
<td>Patient</td>
<td>Paper, Form NS</td>
<td>NR</td>
<td>1DR, 2DR</td>
<td>NR</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>Yang⁵³</td>
<td>Family history questions within larger questionnaire</td>
<td>Breast</td>
<td>Patient</td>
<td>Paper, Form NS</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>House⁴⁸</td>
<td>Family history questionnaire</td>
<td>Breast, Colorectal, Ovarian, Prostate, Uterine</td>
<td>Patient</td>
<td>Paper, structured questions</td>
<td>NR</td>
<td>Selected 1DR</td>
<td>NR</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Hughes⁵⁴</td>
<td>Family history questionnaire</td>
<td>Breast, Ovarian</td>
<td>Patient</td>
<td>Paper, structured questions</td>
<td>No</td>
<td>1DR, 2DR</td>
<td>Both</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>Colombet⁴⁰,⁴¹</td>
<td>Personalised estimate of risks (EsPeR)</td>
<td>Breast, Colorectal, Prostate</td>
<td>Professional</td>
<td>Web-based, Dynamic data input</td>
<td>Yes</td>
<td>NR</td>
<td>Both</td>
<td>NR</td>
<td>Yes</td>
</tr>
<tr>
<td>Braithwaite⁴⁴</td>
<td>Genetic Risk Assessment in the Clinical Environment (GRACE)</td>
<td>Breast</td>
<td>Patient</td>
<td>Interactive software, structured pedigree production</td>
<td>Yes, 1DR, selected 2DR, 3DR</td>
<td>Both</td>
<td>NR</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DeBock⁵⁶</td>
<td>Structured interview</td>
<td>Breast</td>
<td>Professional</td>
<td>In-person interview schedule, structured questions</td>
<td>NR</td>
<td>1DR, 2DR</td>
<td>Both</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Abbreviations: 1DR=first degree relative; 2DR=second degree relative; 3DR=third degree relative; EsPeR=Personalized Estimate of Risks; NR=not reported; NS=not specified; ¹Separate companion risk assessment tool (FCAT) described in Q3 results ²Includes prototype tool, Risk Assessment in Genetics (RAGS)
<table>
<thead>
<tr>
<th>Paper</th>
<th>Tool</th>
<th>Cancer(s)</th>
<th>Target User</th>
<th>Medium, Form of Questions</th>
<th>Direct/Automated Pedigree Output</th>
<th>Degree of Relatives Covered</th>
<th>Side of Family Covered</th>
<th>Data on Unaffected Relatives</th>
<th>Automatic/Direct Risk Assessment Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamin</td>
<td>Family history questionnaire</td>
<td>Breast Others</td>
<td>Patient</td>
<td>Paper, structured questions</td>
<td>No</td>
<td>1DR, further extent unclear</td>
<td>Both</td>
<td>NR</td>
<td>No1</td>
</tr>
<tr>
<td>Fisher</td>
<td>Family history questionnaire</td>
<td>Breast Ovarian</td>
<td>Patient</td>
<td>Paper, question flow chart</td>
<td>No</td>
<td>Selected 1DR, 2DR, 3DR</td>
<td>Both</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Kelly</td>
<td>Family history questionnaire</td>
<td>All</td>
<td>Patient</td>
<td>Paper, Form NS</td>
<td>No</td>
<td>1DR</td>
<td>NR</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>Qureshi</td>
<td>Family history questionnaire</td>
<td>Breast Colorectal Ovarian</td>
<td>Patient</td>
<td>Paper, tabular questions</td>
<td>No</td>
<td>1DR Selected 2DR</td>
<td>Both</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Acheson</td>
<td>Genetic Risk Easy Assessment Tool (GREAT)</td>
<td>Breast Colorectal Ovarian Prostate Other</td>
<td>Patient</td>
<td>Automated structured telephone interview</td>
<td>Yes</td>
<td>1DR, 2DR, first cousins</td>
<td>Both</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Frezzo</td>
<td>Family history questionnaire</td>
<td>Breast Colorectal Ovarian</td>
<td>Patient</td>
<td>Paper, Form NS</td>
<td>No</td>
<td>NR</td>
<td>Both</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Emery</td>
<td>Genetic Risk Assessment in an Intranet and Decision Support (GRAIDS)²</td>
<td>Breast Ovarian Colorectal</td>
<td>Professional</td>
<td>Web-based tool, form NS</td>
<td>Yes</td>
<td>1DR, 2DR</td>
<td>Both</td>
<td>NR</td>
<td>Yes</td>
</tr>
<tr>
<td>Schroy</td>
<td>Personal digital assistant application</td>
<td>Colorectal</td>
<td>Professional</td>
<td>Personal digital assistant, question prompts</td>
<td>No</td>
<td>NR</td>
<td>NR</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Grover</td>
<td>Family history questionnaire</td>
<td>Colorectal Other</td>
<td>Patient</td>
<td>Paper, structured questions</td>
<td>No</td>
<td>1DR, 2DR, 3DR</td>
<td>Both</td>
<td>NR</td>
<td>No</td>
</tr>
<tr>
<td>Paper</td>
<td>Tool</td>
<td>Cancer(s)</td>
<td>Target User</td>
<td>Medium, Form of Questions</td>
<td>Direct/Automated Pedigree Output</td>
<td>Degree of Relatives Covered</td>
<td>Side of Family Covered</td>
<td>Data on Unaffected Relatives</td>
<td>Automatic/Direct Risk Assessment Output</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>----------------------------</td>
<td>-------------</td>
<td>--</td>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Murff</td>
<td>Family history questionnaire</td>
<td>Breast Ovarian Colorectal</td>
<td>Patient</td>
<td>Paper, tabular questions</td>
<td>No</td>
<td>Selected 1DR, 2DR</td>
<td>Both</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Sweet</td>
<td>JamesLink</td>
<td>Breast Colorectal Ovarian Prostate Others</td>
<td>Patient</td>
<td>Touch-screen computer application, branched-point screens</td>
<td>NR</td>
<td>1DR, 2DR, Selected 3DR</td>
<td>Both</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Evaluating the Family History Tools

The tools were evaluated using a range of study designs. In order to avoid ambiguity in terminology, we drew a distinction between the concepts of “comparator” and “control” (or “controlled”). In keeping with the methods described in Chapter 2, we use the term “comparator” to refer to the use of a reference method to assess the extent, nature and/or accuracy of the family history data captured by the tool in question, the comparators being either “ideal”, best estimate interview, or current (“standard”) practice. We use the term “controlled” to indicate a study design where there are at least two arms, one of which is the tool in question and the other an alternative method of capturing family history data. Thus, in a controlled design, participants are assigned (randomly or otherwise) to either the “tool” group or the control group. We considered crossover studies, where the order of data capture (tool or comparator method) was reversed for some participants, to be controlled studies. Table 8 describes the distribution of studies, in which tools were used, between the four possible categories of study design. We noted that one tool44 was evaluated in a controlled study, but that no comparator for family history data capture was used, and no outcomes were reported which were relevant to the tool performance as a method of family history data collection (although outcomes relevant to performance as a RAT are presented under Question 3).

Using this approach, for the purposes of this review, we considered those studies which were uncontrolled studies with no comparator as descriptive, and those which either had a comparator or were controlled to be evaluative, so long as outcomes were reported which were directly relevant to the use of the tool as a method of capturing family history data.

Table 8. Classification of study types

<table>
<thead>
<tr>
<th>Comparator</th>
<th>Controlled</th>
<th>Not controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics interview</td>
<td>Kelly41</td>
<td>Acheson42*</td>
</tr>
<tr>
<td>Current practice</td>
<td>Emery36-39</td>
<td>Grover47</td>
</tr>
<tr>
<td>No comparator</td>
<td>Braithwaite44</td>
<td>Columbel40,41</td>
</tr>
</tbody>
</table>

Crossover design

Validity and Reliability

Six tools (nine publications) were described as having undergone a development or piloting phase36-39,42,44,48,49,51 including one tool (two publications) (Risk Assessment in Genetics, RAGS)38,39 which was the prototype for the Genetic Risk Assessment and Decision Support (GRAIDS) tool36,37 and a self-completion tool which was developed from a previously validated interview schedule.51 Five studies assessed acceptability and ease of completion of the tool.36,37,42-44 Qualitative techniques were also described in studies of four tools, including semi-
structured interviews with practitioners and patients, and focus groups with practitioners. Three studies reported how long it took to complete the tool, ranging from 8 to 30 minutes. One study reported test-retest reliability of 97 percent for 1DR, and 93 percent for 2DR respectively, and 98 percent for cancers identified.

Six tools were presented in seven descriptive papers, without a comparator group or control arm. One study of a family history tool embedded in a RAT presented no outcome data pertaining specifically to performance in capturing family history data.

The performance of the 11 remaining tools was assessed in some way against a defined comparator. For five tools, this was a genetics interview. For one tool, the self-completion questionnaire was assessed against the parent interview schedule administered by non-genetics investigators. Six tools (eight publications) were compared with current practice in some form. This included the family history as recorded in patient charts, and accuracy or completeness of pedigrees derived from simulated patient histories drawn without access to a tool.

Outcomes

Evaluated Against Genetics Interview. Acheson and colleagues described an automated telephone interview tool which was evaluated in a sample of genetics patients. Pedigrees obtained by the tool were blindly compared with those obtained from their clinic interview with a genetic counselor. There was an overlap between the data captured by the tool and the interview. The tool was statistically significantly better than genetics interview at identifying 2DRs and first cousins, and identified more cancers in 2DR and distant relatives. When the risk stratification based on the tool and interview pedigrees was compared, there was good agreement (kappa=0.70) for the breast cancer risk assessment, and moderate agreement for colorectal cancers and all cancers combined. Three families classified as high risk by the tool would be classified low risk on the basis of the interview, and one family classified as low risk by the tool would be classified high risk by the interview pedigree. The tool showed high test-retest reliability.

Qureshi and colleagues described a paper-based, self-completion family history questionnaire, which was compared with a genetics interview conducted by trained researchers. On the basis of the family history captured, 24 percent of tool histories, and 36 percent of interview pedigrees, suggested possibly elevated disease risk which would warrant further investigation. The interview identified 15 percent more 1DRs, and 51 percent more 2DRs, than the tool. The validity of the risk assessments was not determined by a full genetics assessment, so it is not possible to conclude whether the tool was less sensitive or more specific than the interview comparator.

Benjamin and colleagues assessed a standard paper-based, mailed, self-completion family history questionnaire with a clinical genetics interview, as part of a study whose primary aim was to evaluate a companion RAT. Using the interview as the gold standard, the tool had 95 percent sensitivity and 96 percent specificity for family breast cancer risk assessment. On the basis of the tool data alone (before the interview), 51 percent of patients would be assessed as having an elevated risk of familial breast cancer; following the genetics interview, this figure was 62 percent.

Fisher and colleagues assessed a paper-based, patient-completed family history questionnaire in a study whose primary aim was to assess its embedded risk categorization.
scheme. The participants were women attending for routine breast screening, and the history obtained by the tool was confirmed by follow up telephone interview by a genetic counselor. The authors report that this was to check that the tool data reflected the women’s current knowledge of their family history, not to verify it. Of 45 women classified at population risk by the tool, none were reassigned a higher risk on the basis of the genetics interview. Of 45 women classified at elevated risk, none were reclassified as population risk. Further validation of the risk status of the participants through full genetic assessment was not reported.

Kelly and colleagues51 describe a paper-based, patient-completed tool which was assessed in a sample of cancer patients. In a study whose primary aim was to explore psychosocial outcomes related to accuracy of family history reporting, they compared the questionnaire with an interview-based version of the same tool, using a randomized crossover trial design. The authors report around 77 percent concordance for reporting relatives’ age, 81 percent concordance for reporting of relatives’ diagnoses, and 82 percent concordance for reporting of age of diagnosis. There were no discrepant data on whether or not a relative had cancer. The order of completion of tools was not associated with differences in these outcomes.

Evaluated Against Current Practice. Emery and colleagues describe the development of a family history tool and RAT (GRAIDS), the prototype for which was RAGS.36-39 GRAIDS was evaluated using a pragmatic cluster randomized controlled trial,36,37 but no outcomes relating to performance as a FHxT were specifically reported. However, data were reported from an evaluation of the RAGS prototype,39 in which 36 family physicians used three different methods to draw pedigrees and assess the risk of simulated patients. Pedigrees produced using the RAGS tool were statistically significant and more likely to be accurate than those prepared by a genetics software package (Cyrillic) or by traditional pen and paper methods (median correct pedigrees, 5.0/6 for RAGS, 3.5/6 for Cyrillic, 2.0/6 for pen and paper). Participating physicians also preferred RAGS (75 percent) over the other methods (8 percent preferring Cyrillic and 17 percent preferring pen and paper).

Frezzo and colleagues46 compared a paper-based, patient-completed family history questionnaire with a genetics interview in a quasi-randomized parallel group study. Of the 39 internal medicine patients who completed the tool, two were identified at elevated risk of breast/ovarian cancer, three at risk of colorectal cancer, and one at risk of prostate cancer. Review of these patients’ charts revealed only one patient at elevated risk, of colorectal cancer. In the group whose risk was assessed by interview, the corresponding figures are five at risk for breast/ovarian, and four at risk of colorectal cancer, on the basis of the interview, compared with two and two, respectively, on the basis of chart audit. No data were presented regarding the outcome of eventual genetic risk assessment, if any, of the participants.

Schroy and colleagues57 developed an educational intervention for internal medicine residents and assessed the effect of a software tool designed for use on a personal digital assistant. Patients’ family history relevant to colorectal cancer risk was assessed by a structured interview with a research assistant. Patients’ charts were then audited to assess whether positive and negative colorectal cancer family histories were correctly documented. Of 33 residents to whom the software was sent, 29 acknowledged receipt, two acknowledged downloading it, and one indicated that they had used it clinically. Residents supplied with the tool were no more likely than control residents to document a positive cancer family history in patients’ charts (41 percent versus 48 percent), but they were statistically significantly more likely to document a negative family history (89 percent versus 48 percent). The study had low statistical power to
detect small to medium effects, and the residents supplied with the tool also received extra educational intervention compared with controls.

Sweet and colleagues describe the JamesLink system, which is a touch screen, patient-completed tool for capturing family history data. In a study of 362 ambulatory cancer patients, data for 165 indicated moderate or high risk status when reviewed by a geneticist; of these, 16 percent were consistent with a family cancer syndrome. Of 101 patients in the high risk category on the basis of tool data, the chart records suggested family cancer history for 69; seven of the latter had received a full genetics assessment. It was noted that the charts of only 69 percent of patients using JamesLink had family history information available.

Grover and colleagues prospectively assessed concordance between family history information captured by a paper-based, patient-completed family history questionnaire and then subsequently (and independently) recorded in their cancer clinic charts. They noted discordance between data recorded by the two methods. For 127 (41 percent) of the cases in which there was discordant data, 37 charts (29 percent) had reported a negative cancer history, or not documented a cancer history, which was captured by the tool. For 69 patients (54 percent), only some cancers captured by the tool were documented in the notes, and in 21 patients (17 percent), the tool and the notes were completely discordant. Charts did not document 32 percent of cancers reported by patients in the tool, and a third of notes missed cancers in 1DRs captured by the tool.

Murff and colleagues compared a paper-based, self-completion family history questionnaire with the charts of 310 internal medicine patients. They noted that the tool identified more 1DRs and 2DRs with colorectal, breast, or ovarian cancer than the charts and were more likely to capture the age of diagnosis for affected relatives, as well as more likely to identify relatives who were diagnosed before the age of 50. For all cancers together, the age of diagnosis was recorded in the chart for about 62 percent of affected 1DRs compared with 95 percent of those captured in the tool. The corresponding figures for 2DRs were 27 percent and 76 percent, respectively. These differences were highly statistically significant. Out of 48 patients who were identified as being at increased risk, the tool identified 29 who would have been missed by charts alone.

In summary, compared to genetic interviews as a gold standard, many FHxTs performed well. However, the studies reported here are limited because the genetic interviews were not supplemented with confirmation of relatives’ reported medical histories. Compared with current practice, generally the family history documented in patient charts, FHxTs appeared to identify more relatives, more relatives with cancer, and more details about these relatives. In some cases, this would lead to reassessment of risk category and altered prevention plans. Again, validation of the “true” status of relatives was not performed.

Quality Assessment of Studies

Quality assessment using standardized checklists was undertaken on seven observational studies, five parallel RCTs, and one study that was a crossover trial in which cancer patients were randomized to the order of either a personal interview or a survey and a second study. The quality scores for the seven observational studies ranged from 14 to 21, thereby indicating a moderate to high level of quality. Initial reporting of hypotheses, interventions, outcomes, and sample characteristics was transparent and complete. However, the authors of only three of the studies listed important confounders (two adjusted for confounding in the analysis) and one author reported on blinding. Reporting of subject recruitment was also lacking. Confirmation that subjects were representative of the entire population from which they
were drawn was provided in two studies; recruitment of cases and controls from the same source population was mentioned in three studies.

The five parallel RCTs scored either a 4 or 5 on the extended Jadad quality scale. Major quality issues centered around a failure to describe randomization, non-reporting of blinding, and non-reporting of withdrawals, or methods used to assess adverse effects.

The absence of information on issues such as recruitment, randomization, and blinding suggests potentially biased results. Since it is not possible to assess whether the absence of information is linked to poor methods or poor reporting, the actual impact of any biases cannot be ascertained.

Other Methodological Aspects. Few studies described a sample size calculation. Further, for comparative studies where concealment was necessary in qualitative assessment of the FHxT, only a few studies provided evidence that this had been performed.

The participants of most studies would have had a better recall of their family history than the general public due to the fact that very few studies used an unselected general population. Special populations included, for example, respondents with the cancers of interest, or on a cancer registry, and patients seen in specialist clinics. Also, the sequence of FHxT evaluation against comparator may have affected patient recall. The FHxT was given first followed by the best estimate in six studies. In one study, interpretation would have been affected by the paper family history questionnaire and structured “best estimate” interview having identical formats, with both approaches being delivered immediately after each other. Other study designs affecting interpretation included non-randomized allocations and variable response rate to FHxT. When reported, this varied from 40 percent to 98 percent. Non-completion of items accounted for about half the errors in an in-office self-completed FHxT.

Research Q3: Risk Assessment Tools

General Approach

For the purposes of this review we followed the definition of RAT as described in Chapter 2. Some papers were identified which described tools consistent with this definition but which were not developed for use by PCPs, or were evaluated in settings other than primary care. We included some where we considered them to be “potentially applicable to primary care”, in that they did not appear to require specialist genetics knowledge to be applied as intended.

Studies Reviewed

Sixteen publications, representing ten distinct tools, were included in this section of the review. Full study details are summarized in evidence tables (Appendix C), which include information on the evidence cited in support of risk stratification and/or recommended clinical actions. Table 9 presents a description of the tools, assessed against the defined tool

* Appendixes cited in this report are provided electronically at http://ahrq.gov/clinic/tp/famhisttp.htm
<table>
<thead>
<tr>
<th>Paper</th>
<th>Tool</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamin</td>
<td>Familial Cancer Assessment Tool (FCAT)</td>
<td>health professional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clinical management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk stratification algorithm</td>
</tr>
<tr>
<td>Braithwaite</td>
<td>Genetic Risk Assessment in the Clinical Environment (GRACE)</td>
<td>patient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk perception, preventive behavior</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk calculation, risk stratification, clinical guidelines</td>
</tr>
<tr>
<td>Colombet</td>
<td>EsPeR computerized decision support system</td>
<td>health professional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clinical management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>epidemiological data, risk calculation, clinical guidelines</td>
</tr>
<tr>
<td>Emery</td>
<td>Genetic Risk Assessment in an Intranet and Decision Support (GRAIDS), and its prototype Risk Assessment in Genetics (RAGs) Computerized decision support system</td>
<td>health professional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clinical management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk stratification, clinical guidelines</td>
</tr>
<tr>
<td>Fisher</td>
<td>Family history questionnaire</td>
<td>patient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk categorization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk stratification algorithm</td>
</tr>
<tr>
<td>Gilpin</td>
<td>Family History Assessment Tool (FHAT)</td>
<td>health professional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disease risk prediction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk scoring system</td>
</tr>
<tr>
<td>Gramling</td>
<td>Pocket laminated card</td>
<td>health professional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clinical management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk stratification criteria, benchmark ranges, clinical guidelines</td>
</tr>
<tr>
<td>Skinner</td>
<td>Cancer Risk Intake System (CRIS)</td>
<td>patient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>preventive behavior</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clinical guidelines</td>
</tr>
<tr>
<td>Watson</td>
<td>Information pack</td>
<td>health professional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clinical management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clinical guidelines</td>
</tr>
<tr>
<td>Wilson</td>
<td>Multifaceted computerized decision support system</td>
<td>health professional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clinical management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>risk stratification criteria, clinical guidelines</td>
</tr>
</tbody>
</table>

Abbreviations: EsPeR=Personalized Estimate of Risks
characteristics. All tools fulfilled the criterion of timing of use (designed to be used before the health professional or patient takes the relevant decision).

Description of Tools

Cancer Type. Six tools, reported in seven papers,43-45,58-61 were designed to assess risk of breast or breast/ovarian cancer only, four tools (seven papers) were designed to assess risk of breast/ovarian and colorectal cancer,31,36-39,62,63 and one tool (two papers) focused on breast/ovarian, colorectal and prostate cancer.40,41 No tool was identified that focused solely on ovarian cancer risk, colorectal cancer risk, or prostate cancer risk.

Clinical Purpose of Tool. All ten tools (16 papers) were designed to, in simple or complex ways, stratify individuals into risk categories, and all had a component which indicated some form of clinical or personal action.

Target User. Three of the tools31,44,45 were designed for use by patients or the general population, the remainder having been designed for health professionals.

Knowledge Component. Each of the ten tools indicated at least one basis for the knowledge component. These components included: the Claus model;36-39,43,44 the Gail model;31,40,41 national recommendations (e.g., French National Agency for Health Evaluation,40,41 the Australian National Breast Cancer Centre,45 the U.S. Preventive Services Task Force,58 and the Scottish Executive Health Department;62,63 guidelines developed by professional groups (e.g., the UK Cancer Family Study Group45,60,61 and the American Medical Association;31,58 and guidelines developed by local groups.36,37,58,59 For one tool (four papers),36-39 it was indicated that it was designed to facilitate the implementation of appropriate knowledge components in general, not any specific guideline or risk calculation program.

Implementation Format. Five of the tools (nine papers)36-41,44,62,63 were presented in a computer or web-based format and the other five (six papers)43,45,58-61 were presented in document-based format (Table 10). The five computer-based tools incorporated some form of family history data capture with risk calculation and guideline-based recommended actions.31,36-41,44,62 Of the document-based tools, one was a paper-based form with checklist for each relative and an embedded scoring system,59 two were paper questionnaires incorporating suggested actions;43,45 one was a pocket laminated card,58 and one was an information pack with a laminated card and other components.60,61

Applicability to Primary Care. Of the seven tools intended for use by professionals, five were developed explicitly for use by PCPs—either family physicians (four tools, 9 papers)36-39,58,60-63 or physicians working in ambulatory care settings (one tool, two papers).40,41 Two appeared to have been developed in settings other than primary care, or without involving primary care practitioners, but intended for eventual use in that setting.43,59 One patient tool31 was developed in a primary care setting, and the other two44,45 were considered potentially applicable to use in primary care settings.

Evidence of Effectiveness. Findings related to the development of one distinct tool (RAGS/GRAIDS)36-39 is presented across a number of publications. In general, we report findings for this as one distinct tool, but, where appropriate, we present (and clearly indicate) separate data relating to the evaluation of the prototype version (RAGS)38,39 and the current version (GRAIDS).36,37 For four tools (nine papers)36-39,44,60-63 data were presented relating to effectiveness against a defined comparator, in achieving outcomes relevant to supporting decisions by users in practice. One tool31 was evaluated in an uncontrolled before-after study.
Table 10. Tools presented in format designed to facilitate implementation

<table>
<thead>
<tr>
<th>Target group</th>
<th>Implementation format</th>
<th>Study and details</th>
</tr>
</thead>
</table>
| Patients | Computer-based | Braithwaite 2005⁴⁴
GRACE - Structured family history collection with risk stratification and management advice.
Skinner 2005⁵¹
CRIS – stand-alone, touch screen system, capture of family history and other risk factor data, with production of printable, tailored messages designed to facilitate discussions with physician regarding preventive interventions. |
| Patients | Not computer-based | Fisher 2003⁴⁵
Structured family history questionnaire with binary risk stratification and advice to see doctor if high risk |
| Professionals| Computer-based | Colombet 2003^{40,41}
EsPeR - web-based, directed clinical and family history questions with risk calculation and individualized patient guidelines; also risks of avoidable causes of death according to demographic characteristics and printable summaries.
Emery³⁶⁻³⁹
RAGs - computer-based, pedigree drawing, risk calculation, guideline-based recommendations.
GRAIDS, developed from RAGs - web-based, pedigree drawing, risk calculation, guideline-based risk reports and recommendations, patient information.
Wilson 2006^{62,63}
Computer-based, directed family history questions, guideline-based recommendations, background information, web links, printable patient information leaflets, contact email, automatic draft referral letter |
| Professionals| Not computer-based | Watson 2000
Information pack, laminated card with referral guidelines, booklet with background information, patient leaflets.
Benjamin 2003⁴³
Paper-based, directed family history questions, algorithm, suggested onward management.
Gramling 2004⁵⁸
Pocket laminated card, risk stratification criteria, benchmark risk ranges for breast cancer, screening recommendations, contact numbers. |

Abbreviations: CRIS=Cancer Risk Intake System; EsPeR=Personalized Estimate of Risks; GRACE=Genetics Risk Assessment in the Clinical Environment; GRAIDS=Genetic Risk Assessment in an Intranet and Decision Support; RAGs=Risk Assessment in Genetics
Data are reported to the evaluation of four tools (seven papers) implemented in routine practice settings, including the GRAIDS tool, and three studies of two tools where evaluations were conducted under “laboratory-type” conditions, including the RAGS prototype tool. Table 11 summarizes the key points of these studies, including the range of outcomes measured. The remaining studies were tool development or descriptive studies, or the outcomes presented related to the validity or evidence base underlying the stratification system used rather than practice related outcomes.

Quality Assessment of Studies

Standardized quality assessment checklists were employed on the five studies that used randomized trial design. The Jadad scores ranged from 4 to 6. Major problem areas were a failure to report whether the studies were blinded and a failure to report numbers of withdrawals.

The potential for bias in these studies appears quite low. Concerns about non-differential misclassification are always relevant when there is no blinding, but it is impossible to say whether subjects and investigators were not blinded or whether the authors of the manuscripts simply omitted mention of blinding in their published articles.
<table>
<thead>
<tr>
<th>Study</th>
<th>Tool</th>
<th>Users</th>
<th>Design</th>
<th>Comparator</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| Braithwaite44 | “GRACE” Computerized family history and risk assessment tool | Patients | RCT | Consultation with clinical nurse specialist | 1. Acceptability
| | | | | | 2. Risk perception
| | | | | | 3. Anxiety, cancer worry |
| Emery38,39 | “RAGs” prototype Computer-based decision support system | Practitioners| RCT | 1. Pen and paper with available guidelines
| | | | | 2. Cyrillic risk calculation package | Number of appropriate management decisions |
| Emery36,37 | “GRAIDS” Computer-based decision support system | Practitioners| Cluster RCT | Education session | 1. Appropriateness of referrals
| | | | | | 2. Patient risk perception
| | | | | | 3. Patient knowledge
| | | | | | 4. Patient cancer worry |
| Skinner31 | “CRIS” Computerized cancer risk assessment tool | Patients | Uncontrolled before-after | None | Discussion of preventive action with physician |
| Watson60,61 | Hereditary breast cancer information pack | Practitioners| Cluster RCT | 1. No intervention
| | | | | 2. Tool plus education session | Rate of correct referral decisions |
| Wilson62,63 | Multifaceted computer-based decision support system | Practitioners| Cluster RCT | Guidelines document disseminated by mail | 1. Physician confidence
| | | | | | 2. Patient understanding of cancer risk and risk factors
| | | | | | 3. Proportion of referred patients at low and elevated risk |

Abbreviations: CRIS=Cancer Risk Intake System; GRACE=Genetic Risk Assessment in the Clinical Environment; GRAIDS=Genetic Risk Assessment in an Intranet and Decision Support; RAGs=Risk Assessment in Genetics; RCT=Randomized Controlled Trial
Outcomes

Of the evaluative studies of tools directed towards professionals, one (two papers) (the RAGS prototype) was conducted under “laboratory-type” conditions\(^{38,39}\) and three (five papers) were implemented in routine practice settings,\(^{36,60-63}\) including the GRAIDS tool.\(^{36,37}\) In the first of these, the computer-based RAGS prototype application\(^{38,39}\) was compared with pen and paper risk calculation and a specialist risk calculation software package, Cyrillic. The evaluation showed a statistically significant effect of the tool on clinical management decision making for hypothetical cases presented in vignette form. In the study by Watson and colleagues,\(^{60,61}\) a hereditary breast cancer information pack (presented with or without an active educational co-intervention) was compared with no intervention. An analysis of referral letters subsequently received by the relevant genetics centers and breast clinics indicated a statistically significant trend across the three groups in terms of compliance with referral criteria. In the study by Emery and colleagues,\(^{36}\) a randomized controlled cluster trial was used to evaluate a complex intervention which comprised a web-based decision support system (the GRAIDS software, for which RAGS was the prototype) and a nominated “lead clinician” within the practice who received extra training in use of the software and was expected to manage all patients expressing concerns about family history of colorectal or breast cancer. All physicians and nurses in intervention practices also received a short educational session on cancer genetics and an introduction to the GRAIDS software. The control intervention was a mailed paper copy of the relevant regional guidelines, along with a short educational session on cancer genetics. The intervention arm contained an “adaptive” sub-group, in which extra training or software adjustment was used to increase actual use of the intervention. The primary outcome was appropriateness of referrals made to the regional genetics clinic, as assessed by comparison of each referral letter with the regional guidelines. For both cancer groups combined, 95 percent of referrals made by physicians in the intervention group met the guideline criteria, compared with 79 percent in the control group, a statistically significant result. For breast/ovarian cancer referrals, the proportions were 93 percent and 73 percent, respectively (statistically significant) and for colorectal cancer referrals, the proportions were 99 percent and 92 percent (not statistically significant). Overall, there were no statistically significant differences in proportions of patients who were subsequently assessed as being at increased cancer risk by genetics specialists. At the patient level, cancer worry scores were lower in those referred from intervention practices than from control practices, but no statistically significant differences were observed in knowledge or risk perception scores. The fourth study\(^{62,63}\) compared a stand-alone computer based decision support tool with a control intervention of national guidelines disseminated by mail to family physicians. All practices within the health care administrative region were included in the trial, and all intervention practices received the intervention in some form. The primary outcome was physician confidence in four domains related to assessing risk, making clinical management decisions, and counseling patients, and no statistically significant differences were detected between intervention and control groups for any of the four domains. No statistically significant differences between groups were observed in secondary outcomes related to patients’ risk perceptions, beliefs about breast cancer causation, or the risk of referred patients as assessed by genetics specialists.

Of the evaluation of tools directed towards patients, one was conducted under laboratory-type conditions,\(^{44}\) and one was evaluated under conditions approaching routine practice.\(^{31}\) The former\(^{44}\) was an evaluation of the patient oriented “GRACE” tool. It was framed as an...
equivalence or non-inferiority trial, but was not statistically powered for testing of \textit{a priori} hypotheses. The comparator was a consultation with a nurse specialist who used the same evidence base to assess risk and offer advice. Outcomes related to patient acceptability, risk perception, anxiety and cancer worry, were all either statistically non-significant, or favored the control arm. In the second study,31 the Cancer Risk Intake System (CRIS), a touch screen system for patients, was implemented in three primary care clinics. On the basis of family and other history, patients received tailored printouts including up to three messages regarding cancer prevention, to be used as an aid for discussions with their physician. A before-after evaluation suggested that the proportion of patients reporting a physician discussion about tamoxifen use increased from 4.8 percent at baseline to 27.7 percent after using CRIS; the corresponding pre- and post-figures for cancer genetic counseling were 2.8 percent and 28.2 percent, and for colonoscopy were 16.1 percent and 45.2 percent. The lack of a control intervention makes it difficult to assess the extent to which completing the baseline survey acted as a co-intervention.
Chapter 4. Discussion

This review explored both the accuracy of family history reporting by patients and the effectiveness of tools for collecting and using familial cancer history in a primary care setting. Ideally, patients are able to report accurate information on their family history, assisted by effective tools, and health care providers are able to use the information to make beneficial preventive and clinical management decisions.

Accuracy of Family History

In order to fully interrogate this question, evidence of accuracy had to be explored beyond the primary care setting. Although this encompassed broader clinical settings than the most comprehensive published review, the results were fairly similar. Most eligible studies examining accuracy of reporting of cancer family history focused on breast or colorectal cancer, with fewer examining accuracy for ovarian and prostate cancers. In contrast to a previous review, we did not limit studies to those verifying the status of unaffected relatives. This strategy yielded a broader set of studies that evaluated aspects of reliability but there were no significant gains in the number or quality of studies evaluating the primary question of accuracy. Overall, the few rigorous studies which fully evaluated accuracy (i.e., accuracy of reported absence and accuracy of reported presence of cancer in relatives) appeared to suggest that informants are more accurate in identifying which relatives are free of cancer (specificity) than in identifying relatives who have been affected by cancer (sensitivity). Our results indicate that family history reporting may be more accurate for first degree relatives than second degree or beyond, although few studies examined accuracy in the latter. Our findings also suggest that accuracy may be different for different cancer types, and influenced by the method of ascertainment of family history.

Future efforts to improve accuracy of reporting would be improved by explicit consideration of whether sensitivity or specificity is the primary goal, which is dependent on the clinical context and purpose of a family history oriented strategy. For example, maximizing sensitivity prioritizes the goal of missing as few “at risk” family histories as possible, and is consistent with a policy in which the potential benefits from finding potential cases carry more weight than the potential costs and harms of investigating individuals or families with false positive histories. In contrast, maximizing specificity prioritizes avoiding the potential costs and harms of false positives, and is consistent with a policy which directs limited resources towards only identifying individuals or families with the greatest likelihood of being at significant disease risk, at the cost of missing some true positives.

The studies reviewed focused on accuracy as a binary concept (presence or absence of cancer); we do not have evidence relating to the accuracy of other information which is relevant in cancer risk assessment such as information on age of onset. We are unable to comment on which gold standard is “best” for judging accuracy, nor on the effect of clinical setting or tool format. The accuracy of reporting by patients or members of the population cannot be completely separated from the performance of tools to gather such data, but we had limited information on the latter and it was not always evident whether a structured Family History Tool (FHxT) was utilized in data collection.
We also have little insight into which informant characteristics are associated with more accurate reporting; future evaluations could consider formally examining factors such as sex, age, and cultural background. It is possible that informants affected by cancer may seek out more complete information on their family history after their initial diagnosis, but we were unable to confirm this speculation.

Future research should also consider the issue of reliability of patient recall, including the issue of what is an “adequate” interval for studies of repeatability. We suggest that it would be helpful to try to separate the reliability of reporting as a psychometric property in an individual from the reliability of reporting as a function of extra knowledge sought by an individual from other family members in the period between first and second data collections.

In general, we might expect that the accuracy of family history reporting will improve in future, as current initiatives lead to more awareness on the part of the general public. It is not clear whether this will be countered by the effect that increased population mobility has on people’s abilities to keep up to date with the health of more distant family members.

Family History Tools

The review identified a number of FHxTs developed for use in a primary care setting, most of which had not been evaluated against either best estimate gold standard or current primary care practice. Because of the limited number of studies, the evaluation of FHxTs was extended to relevant tools in non-primary care settings. Taken together, there was reasonable agreement between FHxTs and accepted best estimate gold standard, and, when compared to current primary care standard practice, FHxTs identified significantly more genetically relevant family history information. The clinical significance and added benefit of this added information still needs to be explored.

The tools identified in this review varied considerably, from those which took a comprehensive approach, emulating the geneticist’s pedigree drawing interview to those which focused on identifying selected cancers in specific relatives. Many were designed to be used in the physician’s office, in paper-based or electronic format. It has been suggested that other formats, such as web-based or mailed surveys, allow patients and consumers to (potentially) take “ownership” of their family history, offer them the opportunity to gather information from relatives, and may make for better use of primary care provider (PCP) time. Some electronic tools require patients to assemble family history information in advance of the office visit, which may also promote accuracy and ownership. Some studies have shown high response rates to mailed FHxTs from PCPs and “consumer empowerment” was the basis of the previous U.S. Surgeon General’s Thanksgiving “Family History Day.” Several organizations have set up similar web-based FHxTs for public use (http://www.norwichunion.com/healthtree/index.htm; http://www.ama-assn.org/ama/pub/category/13333.html).

The acceptability and ease of completion of FHxTs were assessed in only a few studies. These aspects of the tools’ content and face validity should be an integral part of any evaluation of future primary care FHxTs.
While some authors have identified elements that could be included in an “appropriate” family history (see Figure 5), there is no explicit consensus on a minimum data set covering the extent and the nature of family history data appropriate to primary care practice. Until the evidence base is clear, it is suggested that a minimum adequate cancer family history should include information on siblings, parents and grandparents (and the paternal and maternal lineage of the latter), specific enquiry about whether other relatives had the cancers of interest, and the ethnicity of the respondent. When cancer is identified, the age of diagnosis should also be noted, and other relatives with similar or related conditions identified.

Figure 5. Typical information obtained in Three-Generation Pedigree

- Age or year of birth
- Age and cause of death (for those deceased)
- Ethnic background of each grandparent
- Relevant health information (e.g., height and weight)
- Illnesses and age at diagnosis
- Information regarding prior genetic testing
- Information regarding pregnancies, including infertility, spontaneous abortions, stillbirths, and pregnancy complications
- Information also obtained for half-siblings
- Consanguinity issues directly addressed

In assessing individual tools, it is important to consider the notion of “appropriateness” in relation to individual patient factors (e.g., age) and in terms of patient population characteristics. For instance, for a 40-year old patient it may be appropriate to enquire about all siblings, parents and grandparents, but children’s health may not be as relevant for eventually determining cancer risk. Where there is concern about risk of familial breast cancer, information on aunts and uncles may be more informative than that on grandparents. Also, while some authors have suggested that a minimum family history should cover three generations, the reliability of information beyond first degree relatives and grandparents is unclear (see comments on accuracy, above). On the other hand, some genetic RATs require a count of the number of unaffected relatives, as well as those with a cancer of interest (e.g., Yang 1998). Accurate risk assessment generally requires information on the side of the family (maternal or paternal) to which relatives with cancer belong, and most FHxTs identified this. Finally, ethnicity (an indication of ancestry) may be associated with increased risk of particular disorders, including some cancers, but few tools were designed to capture such data on ethnicity.

We suggest that, in future FHxT development studies, it would be useful to distinguish between two different purposes for FHxTs – assembly and updating of “complete” family history information in a generic approach, and ascertainment of targeted information for specific disease risk assessment. For the latter, it may be logical to evaluate the performance of a FHxT as part of a disease-specific RAT, rather than as a stand-alone tool. For more generic tools, approaches to their rational development and evaluation would benefit from agreement on the “minimum family history dataset” for primary care purposes, bearing in mind that the goal in this setting is usually to stratify or triage risk rather than ascertain or diagnose a genetic condition. An evidence-based minimum dataset would take into account evidence on accuracy of patient
reporting of family history under primary care office conditions and might not necessarily have to replicate the extent or type of data captured in a clinical genetics setting. Table 12 lists some of the elements which could be considered for inclusion in a minimum dataset. It is presented to foster discussion and evaluation only as it is not within the scope of this review to formally assess its utility or feasibility.

Family histories are not static, however, practical issues of updating family history have not been explored. On the one hand, PCPs may be able to assemble a patient’s family history information over time, but on the other, necessary updates consume time and resources. Acheson has reported that most family histories were completed on the first visit. It would be worth considering formally whether a staged approach over several visits leads to more accurate or extensive information, and clarifying the optimum interval for updates.

It seems logical that FHxTs are likely to produce most benefit if they are accompanied by management plans for patients at familial cancer risk; otherwise “proactive” family history collection by PCPs and/or consumers may be wasteful of time, energy, health care resources, and may even be harmful. While some guidelines recommend that family history information should only be collected in response to patient enquiry about familial breast cancer risk or if the provider suspects increased cancer risk, others argue that family history collection is an integral part of good clinical practice in primary care and that failure to do so should be considered negligence.

Risk Assessment Tools

An inclusive definition of RAT was used to capture the widest range of interventions potentially applicable to primary care. Their formats varied from fairly simple tools designed solely to stratify risk to those in which the capture of family history data was closely linked with management recommendations within a format designed to promote implementation in practice. We chose to focus on only those guidelines that had been formally evaluated in their own right, or embedded in some form of tool designed to promote use in practice. This decision recognized the very large number of familial cancer stratification guidelines which had been published over the time period of the review. We judged that an exhaustive approach to describing such guidelines would have provided little insight into the review questions and would likely be quickly out of date. However, for information, we listed the guidelines developed by national agencies or professional organizations in an Appendix B.*

Similarly, we focused only on those RATs which produced as output a risk of cancer, and excluded those for which the only output was risk of a given mutation. Our rationale was that family history reflects an integration of risk generated by genetic factors (including gene variants which may confer only modest increase in risk), shared environments, and common behaviors and is an important predictor, in its own right, of disease risk. We suggest that this approach is consistent with the overall primary care perspective of the review, and increases the likelihood that the tools included would be accepted as relevant and usable by the target professional groups, outside the specialist genetics setting. In addition, clinically valid RATs which generate disease risk strata should, by definition, allocate families with high risk of mutation into the highest risk category, therefore alerting practitioners to their need for specialist assessment.

* Appendixes cited in this report are provided electronically at http://ahrq.gov/clinic/tp/famhisttp.htm
Table 12: Potential items for inclusion in minimum family history dataset

(a) Relatives on whom data may be captured

<table>
<thead>
<tr>
<th>Degree of relatedness</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informant 1</td>
<td></td>
</tr>
<tr>
<td>Spouse/partner(^2)</td>
<td></td>
</tr>
<tr>
<td>First degree</td>
<td></td>
</tr>
<tr>
<td>Blood relatives</td>
<td></td>
</tr>
<tr>
<td>Mother, father</td>
<td></td>
</tr>
<tr>
<td>Brothers, sisters</td>
<td></td>
</tr>
<tr>
<td>Sons, daughters</td>
<td></td>
</tr>
<tr>
<td>Second degree</td>
<td></td>
</tr>
<tr>
<td>Blood relatives</td>
<td></td>
</tr>
<tr>
<td>Grandparents (both sides)</td>
<td></td>
</tr>
<tr>
<td>Aunts and uncles (both sides)</td>
<td></td>
</tr>
<tr>
<td>Half-brothers and half-sisters</td>
<td></td>
</tr>
<tr>
<td>Grandchildren</td>
<td></td>
</tr>
<tr>
<td>Third degree</td>
<td></td>
</tr>
<tr>
<td>Blood relatives</td>
<td></td>
</tr>
<tr>
<td>Cousins (both sides)</td>
<td></td>
</tr>
<tr>
<td>Nephews and nieces (both sides)</td>
<td></td>
</tr>
</tbody>
</table>

(b) Items of information that may be captured

<table>
<thead>
<tr>
<th>Individual</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informant/patient</td>
<td>Age or date of birth</td>
</tr>
<tr>
<td>History of cancer, for each</td>
<td></td>
</tr>
<tr>
<td>• age at diagnosis</td>
<td></td>
</tr>
<tr>
<td>• specific information (e.g., bilaterality)</td>
<td></td>
</tr>
<tr>
<td>History of other relevant medical conditions (depending on cancer)</td>
<td></td>
</tr>
<tr>
<td>Results of relevant investigations, including genetic tests</td>
<td></td>
</tr>
<tr>
<td>Ethnicity or ancestry</td>
<td></td>
</tr>
<tr>
<td>• Self-identified ethnic group</td>
<td></td>
</tr>
<tr>
<td>• Ethnic group of grandparents</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relatives</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of cancer, for each</td>
<td></td>
</tr>
<tr>
<td>• age at diagnosis</td>
<td></td>
</tr>
<tr>
<td>• specific information (e.g., bilaterality)</td>
<td></td>
</tr>
<tr>
<td>• source/certainty of information</td>
<td></td>
</tr>
<tr>
<td>History of other relevant medical conditions (depending on cancer)</td>
<td></td>
</tr>
<tr>
<td>History of relevant investigations, including genetic tests</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Living relatives</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current age/date of birth</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deceased relatives</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at death</td>
<td></td>
</tr>
<tr>
<td>• Source of information</td>
<td></td>
</tr>
<tr>
<td>• Certainty of information</td>
<td></td>
</tr>
<tr>
<td>Cause of death</td>
<td></td>
</tr>
<tr>
<td>• Source of information</td>
<td></td>
</tr>
<tr>
<td>• Certainty of information</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Personal medical history important in risk assessment
\(^2\) May be relevant in respect of environmental and lifestyle/behavioral aspects of risk assessment
A large number of studies reported outcomes in terms of the distribution of patients across risk strata compared with an independent standard (e.g., an accepted guideline or an assessment by a specialist geneticist). This is an approach to assessing clinical validity (i.e., predictive value) and is of course dependent on the validity of the gold standard comparator. This review was not designed to assess this component of clinical validity, which ultimately requires studies that rigorously evaluate how well risk categorization predicts eventual disease outcome. We found that very few studies examined effectiveness in terms relevant to the questions posed in this review—either professional practice outcomes (e.g., improved confidence in clinical decision making) or patient outcomes (e.g., more accurate risk perception). Taken together, the evidence is not sufficient to make definitive recommendations, but it does tentatively indicate that RATs may improve the appropriateness of referral of patients for genetic counseling. Whether this is clinically or administratively worthwhile depends on the local clinical context. The extra benefit from a RAT must be set against the costs of implementation, particularly if there is already high compliance with referral guidelines. There is insufficient evidence to determine whether RATs, by themselves, are likely to improve physician confidence or skills in broader aspects of patient care related to familial cancer.

Just as with FHxTs, the potential effectiveness of RATs may be confounded by the strategy used to implement them in practice. Decision tools are complex interventions, and thus present challenges in their development, application, and evaluation. Recent analyses have begun to identify the characteristics of decision tools that appear most likely to promote effectiveness in practice but few studies have evaluated patient outcomes. One of the most significant predictors of decision tool effectiveness appears to be the automatic provision of decision support as part of a practitioner’s workflow. This should become increasingly straightforward to achieve as electronic medical records become more widely implemented and linked with computer-based RATs. Other predictors of tool effectiveness include the provision of actionable recommendations (rather than just assessments); the provision of decision support at the time and location of decision making; the periodic feedback on performance to users; built-in features that promote the sharing of recommendations with patients; and systems that request documentation of reasons for not following recommended actions. It is plausible that this emerging evidence on desirable characteristics of decision tools, while still preliminary, is applicable to family history based RATs. It should be noted that many tools have been evaluated by the same investigators who developed them, and that such studies seem to report higher levels of practitioner performance than studies where tools are evaluated by independent observers.

The barriers to the use of FHxTs and RATs tools in practice include lack of time, lack of PCPs’ confidence in their knowledge and skills in genetics, and reimbursement policies. Finally, even though a typical PCP may provide care to a significant number of patients with a history of familial cancer, they may make up only a very small part of his or her daily practice. Hyland et al. suggested that the rate of physician contact with women with a family history of breast cancer was about 0.6 consultations per month per family physician. Systems to implement apparently efficacious tools therefore need to take account of these barriers, and broader consideration could be given to the cost-effectiveness of developing tools which assess familial risk across a range of common chronic disorders.

All of these factors taken together suggest that effective RATs require a coherent, evidence-informed approach to their design, consideration of their integration with other clinical and office systems, and attention to contextual factors which might moderate their effect, and their marginal benefit in practice.
Limitations

The studies reviewed in this report were limited to those published in English; however, the impact of any language bias is offset by the optimal applicability to English speaking countries for which this report was prepared. Our peer review process allowed content experts in this area to identify any additional studies (both published and unpublished) of relevance for this review thereby minimizing the likelihood of publication bias. In addition to using several web-based search engines, our search of relevant grey literature was limited to sites specified by the investigators, our technical expert panel (TEP), and peer reviewers. We contacted the authors of eligible studies to request copies of the tools or methods used to ascertain eligibility of family history method for this review. The majority of authors contacted did respond, but some did not. Language bias also limited the ability to interpret non-English FHxT, however this had a minimal impact on the studies described and evaluated. The budget and timelines available, however, were limiting factors in pursuing complete retrieval of all the instruments used to collect family history in the eligible studies.

Our criteria for defining a systematic FHxT or RAT resulted in the exclusion of guidelines, recommendations or mutation risk calculators (see above). These are all “decision tools” and, even though a rationale was provided, their exclusion was arbitrary. The result may be that the review has underplayed the value of guidelines (however published) in promoting effective clinical practice, and overlooked “specialist” tools which might actually be useful in primary care without further modification. Similarly, the definition used for applicability to family practice was based on criteria developed within our investigative team and has not been subject to external scrutiny. In the context of accuracy of family history reporting, eligible studies did not use the same method to ascertain family history or verify status within all relatives. As such, interpretation of the metrics of accuracy was limited to the methods of family history ascertainment and verification used in these studies.

Conclusion

The accuracy of self reported family history has implications for the correct risk assessment and management of patients. Accuracy of cancer family history reporting appears to be dependent on cancer type and method of collection, and accurate reporting of absence of cancer (specificity) appears to be greater than accurate reporting of presence of cancer (sensitivity). Accuracy of recall and reporting may be influenced by both patient factors and by the method used to capture the data (the tool). No studies appear to have examined both of these together, so it is impossible to comment definitively on their relative contributions to any lack of accuracy.

Family history is a fundamental element of health information, and the ability to take an adequate and accurate family history should be recognized as a core skill for all PCPs, irrespective of the availability of tools. Very few FHxTs have been developed for, and evaluated in, primary care settings. Further, few tools have been compared with either “best practice” (genetic interview) or current primary care practice (family history as recorded in charts). Although the evidence is very limited, and depends on extrapolation of studies of tools in settings other than primary care, it suggests that systematic FHxTs may add significant genetic family history information compared to current primary care practice.
A number of RATs, of varying format and complexity, have been developed for primary care settings, and a few of these have been evaluated in controlled trials. These studies provide tentative evidence for the effectiveness of such tools, but their utility in routine practice has not been established.

Recommendations

1. Consensus should be reached on the extent of family history enquiry necessary for different clinical purposes and circumstances, taking into account the likelihood of accuracy of self-reported information for different relatives, and the use to which the information will be put (e.g., overall or specific risk assessment).

2. The benefits, costs and harms of using patient-completed tools for systematic family history collection and risk assessment, as a substitute for, or complement to, professional tools should be further examined. As well as assessing technical outcomes such as accuracy and completeness of data captured, evaluations should consider outcomes which relate to patient “empowerment” and the use of practitioner and health care resources.

3. Further research is required to identify the specific strategies (e.g., sending tools home with patients) and tool features which promote the most accurate reporting of family history information.

4. The optimum interval for updating a patient’s family history information in primary care should be formally evaluated.

5. Further evaluation of FHxTs and RATs in routine clinical settings and practice is required. Studies should: adopt appropriate comparators (generally current practice); ensure that tools are optimized (in terms of, for example, face and content validity) before evaluation; measure outcomes that relate to utility in routine practice; measure outcomes that provide information on potential costs or harms as well as benefits; and address or explore contextual factors which may modify utility in practice (e.g., practice infrastructure, time available).
References

95. Enhancing the oversight of genetic tests: recommendations of the SACGT. Secretary's Advisory Committee on Genetic Testing, Baltimore, Maryland: National Institutes of Health, Department of Health and Human Services; 2000.

Acronyms/Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1DR</td>
<td>First Degree Relatives</td>
</tr>
<tr>
<td>2DR</td>
<td>Second Degree Relatives</td>
</tr>
<tr>
<td>3DR</td>
<td>Third Degree Relative</td>
</tr>
<tr>
<td>BED</td>
<td>Best Estimate Diagnosis</td>
</tr>
<tr>
<td>BRCAPRO</td>
<td>Breast Cancer Program</td>
</tr>
<tr>
<td>BOADICEA</td>
<td>Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CFHF</td>
<td>Comprehensive FH Form</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CR</td>
<td>Cancer Registry</td>
</tr>
<tr>
<td>CRC</td>
<td>Colorectal Cancer</td>
</tr>
<tr>
<td>CRIS</td>
<td>Cancer Risk Intake System</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardio Vascular Disease</td>
</tr>
<tr>
<td>Cyr</td>
<td>Cyrillic</td>
</tr>
<tr>
<td>DOB</td>
<td>Date of Birth</td>
</tr>
<tr>
<td>DOR</td>
<td>Diagnostic Odds Ratio</td>
</tr>
<tr>
<td>DQ</td>
<td>Direct Question</td>
</tr>
<tr>
<td>EsPeR</td>
<td>Personalized Estimate of Risk</td>
</tr>
<tr>
<td>FAP</td>
<td>Familial Adenomatous Polyposis</td>
</tr>
<tr>
<td>FCAT</td>
<td>Familial Cancer Assessment Tool</td>
</tr>
<tr>
<td>FHAT</td>
<td>Family History Assessment Tool</td>
</tr>
<tr>
<td>FHQ</td>
<td>Family History Questionnaire</td>
</tr>
<tr>
<td>FHS</td>
<td>Family History Score</td>
</tr>
<tr>
<td>FHxT</td>
<td>Family History Tool</td>
</tr>
<tr>
<td>GCI</td>
<td>Genetic Counsellor interview</td>
</tr>
<tr>
<td>GI</td>
<td>Genetic Interview</td>
</tr>
<tr>
<td>GNI</td>
<td>Genetic Nurse Interview</td>
</tr>
<tr>
<td>GP</td>
<td>General Practitioner</td>
</tr>
<tr>
<td>GRACE</td>
<td>Genetic Risk Assessment in the Clinical Environment</td>
</tr>
<tr>
<td>GRAIDS</td>
<td>Genetic Risk Assessment in an Intranet and Decision Support trial</td>
</tr>
<tr>
<td>HBOCS</td>
<td>Hereditary Breast-Ovarian Cancer Syndrome</td>
</tr>
<tr>
<td>HNPCC</td>
<td>Hereditary Nonpolyposis Colorectal Cancer</td>
</tr>
<tr>
<td>IM</td>
<td>Internal Medicine</td>
</tr>
<tr>
<td>LFS</td>
<td>Li-Fraumeni Syndrome</td>
</tr>
<tr>
<td>LR-</td>
<td>Negative Likelihood Ratio</td>
</tr>
<tr>
<td>LR+</td>
<td>Positive Likelihood Ratio</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MR</td>
<td>Medical Records</td>
</tr>
<tr>
<td>N/A</td>
<td>Not Applicable.</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Clinical Excellence</td>
</tr>
<tr>
<td>NIDDM</td>
<td>Non-Insulin Dependent Diabetes Mellitus</td>
</tr>
<tr>
<td>NPV</td>
<td>Negative Predictive Value</td>
</tr>
<tr>
<td>NR</td>
<td>Not Reported</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>PAC</td>
<td>Probability of Agreement of Cancer</td>
</tr>
<tr>
<td>PANC</td>
<td>Probability of Agreement of No Cancer</td>
</tr>
<tr>
<td>PC</td>
<td>Primary Care</td>
</tr>
<tr>
<td>PCP</td>
<td>Primary Care Provider</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>PMH</td>
<td>Past Medical History</td>
</tr>
<tr>
<td>PPV</td>
<td>Positive Predictive Values</td>
</tr>
<tr>
<td>PSI</td>
<td>Physician Structured Interview</td>
</tr>
<tr>
<td>Q</td>
<td>Question</td>
</tr>
<tr>
<td>QOL</td>
<td>Quality Of Life</td>
</tr>
<tr>
<td>RAGS</td>
<td>Risk Assessment in Genetics</td>
</tr>
<tr>
<td>RAT</td>
<td>Risk Assessment Tool</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized Controlled Trial</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error</td>
</tr>
<tr>
<td>SRS</td>
<td>Systematic Review Software</td>
</tr>
<tr>
<td>TED</td>
<td>Thrombo-Embolic Disease</td>
</tr>
<tr>
<td>VS</td>
<td>Versus</td>
</tr>
</tbody>
</table>
APPENDIXES
Appendix A. Exact Search Strings and Web Sites Searched

All searches updated to July 22, 2007

Ovid MEDLINE(R)

1 Breast Neoplasms/
2 exp Colorectal Neoplasms/
3 exp Ovarian Neoplasms/
4 exp Prostatic Neoplasms/
5 ((breast or ovar$ or prostate or colon or colorectal) adj3 (cancer$ or neoplasm$ or carcinom$)).ti,ab.
6 or/1-5
7 (note or comment or editorial or letter).pt.
8 exp Medical History Taking/
9 exp Family/ or exp Family Health/
10 exp Pedigree/
11 limit 10 to humans
12 ((family or familial) adj3 (histor$ or history-taking or risk$)).ti,ab.
13 anamnesis.ti,ab.
14 (human adj2 pedigree).ti,ab.
15 (genetic adj2 (risk adj3 (assessment or evaluation))).ti,ab.
16 genogram$.mp.
17 ((famil$ or heredi$ or inherit$) adj3 (cancer$ or carcinom$ or neoplasm$)).ti,ab.
18 or/8-9,11-17
19 6 and 18
20 limit 19 to yr="1990 - 2007"
21 20 not 7
22 exp Neoplasms/
23 cancer$.ti,ab.
24 or/22-23
25 (method$ or tool$ or form$).ti,ab.
26 ((genetic or famil$ or heredit$ or inherit$) adj2 (risk adj3 (assessment or evaluation))).ti,ab.
27 26 and 25
28 (famil$ histor$ adj3 (method$ or tool$ or form$)).ti,ab.
29 27 or 28
30 29 and 24
31 limit 30 to yr="1990 - 2007"
32 31 not 7
33 32 or 21
EMBASE

1 exp Neoplasms/
2 cancer$.ti,ab.
3 or/1-2
4 (method$ or tool$ or form$).ti,ab.
5 ((genetic or famil$ or heredit$ or inherit$) adj2 (risk adj3 (assessment or evaluation))).ti,ab.
6 4 and 5
7 (famil$ histor$ adj3 (method$ or tool$ or form$)).ti,ab.
8 or/6-7
9 3 and 8
10 limit 9 to yr="1990 - 2007"
11 exp Breast Cancer/
12 exp Colon Cancer/
13 exp Ovary Cancer/
14 exp Prostate Cancer/
15 ((breast or ovar$ or prostate or colon or colorectal) adj3 (cancer$ or neoplasm$ or carcinom$)).ti,ab.
16 or/11-15
17 (note or comment or editorial or letter).pt.
18 exp anamnesis/
19 ((family or familial) adj3 (histor$ or history-taking or risk$)).ti,ab.
20 anamnesis.ti,ab.
21 (human adj2 pedigree).ti,ab.
22 (genetic adj2 (risk adj3 (assessment or evaluation))).ti,ab.
23 ((famil$ or heredi$ or inherit$) adj3 (cancer$ or carcinom$ or neoplasm$)).ti,ab.
24 genogram$.mp.
25 or/18-24
26 16 and 25
27 limit 26 to yr="1990 - 2007"
28 27 not 17
29 10 not 17
30 or/28-29

CINAHL - Cumulative Index to Nursing & Allied Health Literature

1 (note or comment or editorial or letter).pt.
2 exp Medical History Taking/
3 exp Family/ or exp Family Health/
4 exp Pedigree/
5 limit 4 to humans [Limit not valid in: CINAHL; records were retained]
6 ((family or familial) adj3 (histor$ or history-taking or risk$)).ti,ab.
7 anamnesis.ti,ab.
8 (human adj2 pedigree).ti,ab.
9 (genetic adj2 (risk adj3 (assessment or evaluation))).ti,ab.
EBM Reviews - Cochrane Central Register of Controlled Trials

1 Breast Neoplasms/
2 exp Colorectal Neoplasms/
3 exp Ovarian Neoplasms/
4 exp Prostatic Neoplasms/
5 ((breast or ovar$ or prostate or colon or colorectal) adj3 (cancer$ or neoplasm$ or carcinom$)).ti,ab.
6 or/1-5
7 (note or comment or editorial or letter).pt.
8 exp Medical History Taking/
9 exp Family/ or exp Family Health/
10 exp Pedigree/
11 limit 10 to humans [Limit not valid; records were retained]
12 ((family or familial) adj3 (histor$ or history-taking or risk$)).ti,ab.
13 anamnesis.ti,ab.
14 (human adj2 pedigree).ti,ab.
15 (genetic adj2 (risk adj3 (assessment or evaluation))).ti,ab.
16 genogram$.mp.
17 ((famil$ or heredi$ or inherit$) adj3 (cancer$ or carcinom$ or neoplasm$)).ti,ab.

10 ((famil$ or heredi$ or inherit$) adj3 (cancer$ or carcinom$ or neoplasm$)).ti,ab.
11 or/2-3,5-9,10
12 exp Breast Neoplasms/
13 exp Colorectal Neoplasms/
14 exp Ovarian Neoplasms/
15 exp Prostatic Neoplasms/
16 ((breast or ovar$ or prostate or colon or colorectal) adj3 (cancer$ or neoplasm$ or carcinom$)).ti,ab.
17 or/12-16
18 11 and 17
19 limit 18 to yr="1990 - 2007"
20 19 not 1
21 exp Neoplasms/
22 cancer$.ti,ab.
23 or/21-22
24 (method$ or tool$ or form$).ti,ab.
25 ((genetic or famil$ or heredit$ or inherit$) adj2 (risk adj3 (assessment or evaluation))).ti,ab.
26 24 and 25
27 (famil$ histor$ adj3 (method$ or tool$ or form$)).ti,ab.
28 or/26-27
29 23 and 28
30 limit 29 to yr="1990 - 2007"
31 30 not 1
32 20 or 31
18 or/8-9,11-17
19 6 and 18
20 limit 19 to yr="1990 - 2007"
21 20 not 7
22 exp Neoplasms/
23 cancer$.ti,ab.
24 or/22-23
25 (method$ or tool$ or form$).ti,ab.
26 ((genetic or famil$ or heredit$ or inherit$) adj2 (risk adj3 (assessment or evaluation))).ti,ab.
27 26 and 25
28 (famil$ histor$ adj3 (method$ or tool$ or form$)).ti,ab.
29 27 or 28
30 29 and 24
31 limit 30 to yr="1990 - 2007"
32 31 not 7
33 32 or 21
<table>
<thead>
<tr>
<th>Title</th>
<th>Website address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Genetic Family History In Practice Newsletter - Spring 2005</td>
<td>http://www.nchpeg.org/newsletter/inpracticespr05.pdf</td>
<td>NCHPEG Newsletter for Health Care Professionals</td>
</tr>
<tr>
<td>The Genetic Family History In Practice Newsletter - Spring 2003</td>
<td>http://www.nchpeg.org/newsletter/inpracticespr03.pdf</td>
<td>NCHPEG Newsletter for Health Care Professionals</td>
</tr>
<tr>
<td>Family Disease Checklist</td>
<td>http://www.genetests.org/servlet/access?id=8888892&key=TkJwZfXb38xZ&fnc=γ&fw=61uz&filename=/tools/concepts/checklist.html</td>
<td>Genetic Tools Website – Genetics Through a Primary Care Lens</td>
</tr>
<tr>
<td>Your Family Medical History</td>
<td>http://www.genetests.org/servlet/access?id=8888892&key=xdmgI6ahsKyfIS&fnc=γ&fw=qgJE&filename=/tools/concepts/medHist.html</td>
<td>Genetic Tools Website – Genetics Through a Primary Care Lens</td>
</tr>
<tr>
<td>BRCA and Breast/Ovarian Cancer -- Disorder Setting</td>
<td>http://www.cdc.gov/genomics/gttesting/file/print/FBR/BCDisSet.pdf</td>
<td>Draft Genetic Test Review</td>
</tr>
<tr>
<td>American Medical Association Adult Family History Form</td>
<td>http://www.ama-assn.org/ama/pub/category/13333.html</td>
<td>Electronic Family History Form</td>
</tr>
<tr>
<td>Predictive Genetic Testing for Breast and Prostate Cancer</td>
<td>www.ccohta.ca</td>
<td>Canadian Coordinating Office for Health Technology Assessment (CCOHTA) Technology Report</td>
</tr>
<tr>
<td>Molecular Diagnosis for Hereditary Cancer Predisposing Syndromes: Genetic Testing and Clinical Impact</td>
<td>www.ccohta.ca</td>
<td>Canadian Coordinating Office for Health Technology Assessment (CCOHTA) Technology Report</td>
</tr>
<tr>
<td>Title</td>
<td>Website address</td>
<td>Type</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
</tbody>
</table>
Appendix B. Forms/Guides and Internet Family History Tools

Title and Abstract Screening Level 1

Reviewer Comments (Add a Comment) __

1. Does this article focus on providers’ attitudes (views, opinions) towards collecting or using family history in clinical practice?
 □ Yes
 □ No (neutral)

2. Does this citation focus on either: capturing/collecting/collating information related to family history of disease or history of illness in other family members by any method whether self-reported or by a professional. (exclude if it is personal medical history taking only with no components dealing with family history) OR a method/approach/tool/guidelines to assist a health professional use family history information in clinical decision making (e.g. genetic/familial risk assessment)
 □ Yes
 □ No (exclude)

3. Does the citation include the following cancers? (Check all that apply)
 □ Breast, Colorectal/Colon, Ovarian, Prostate
 □ Cancer Unspecified
 □ None of the Above (exclude)

4. Is this a primary study, conference proceedings, thesis, technical report or letter with primary study data? OR GUIDELINES
 □ Yes
 □ None of the above (exclude)
 □ This a review (exclude)

5. Is this article in English?
 □ Yes
 □ No (please specify)
Screening Instructions for Family History (Fam_Hx)

General: The first two questions are mandatory and the rest optional. Your answers to question 1 should not effect how you answer the rest of the form. Once you mark your first “exclude” answer, you do not need to fill out the rest of the form.

1. Does this article focus on providers' attitudes (views, opinions) towards collecting or using family history in clinical practice?
 □ Yes
 □ No (neutral)

Mandatory—Most of the articles that would fit the “yes” criteria for this question will use surveys, opinion polls or focus groups to determine how providers feel about collecting or using family history in their practice.

2. Does this citation focus on either: capturing/collecting/collating information related to family history of disease or history of illness in other family members by any method whether self-reported or by a professional. (exclude if it is personal medical history taking only with no components dealing with family history) OR a method/approach/tool/guidelines to assist a health professional use family history information in clinical decision making (e.g. genetic/familial risk assessment)
 □ Yes
 □ No (exclude)

We are interested in both how family medical history is gathered and how it is used in clinical practice. This would include such things as online tools, questions asked in the doctor’s office etc. (we are interested in ANY means). Personal medical histories are a bit tricky. If it is only about the individual’s medical history (e.g. what childhood illness did you have?) exclude, but if there is even one question about the medical history of other family members, then answer “yes”. We are also interested in tools, methods, approaches or guidelines that help practitioners use the family history that they have collected. Genetic/familial risk assessment or risk management are common terms in these types of articles.

Exclude:

- Articles that focus on genealogy (non-medical family history)
- Articles that purely focus on molecular genetics (terms such as methylate/methylation “micro satellite” “polymorphisms” are unlikely to be in the title of articles we want to include)
- Study collects family history and describes aspects of patients with and without positive FHx but does not emphasize attributes (including accuracy) of the tool or measure (we know some measure was used to establish family history…but it appears the focus is not on the measure)
- If a study focuses on the patient and their risk evaluation (their feelings about own family history or perception of the magnitude of risk)…the study does not focus on the providers understanding of risk.
3. Does the citation include the following cancers?
 - Breast, Colorectal/Colon, Ovarian, Prostate
 - Cancer Unspecified
 - None of the Above (exclude)

Mandatory—mark the answer that applies. We are interested in articles on the specific cancers listed or those that refer to cancer generally without specifying types. If you answer “none of the above” you do not need to answer any more questions.

4. Is this a primary study, conference proceedings, thesis, technical report or letter with primary study data?
 - Yes
 - None of the above (exclude)
 - This a review (exclude)

Look carefully at any letters and include them if they contain primary study data (they will normally be more than 1 page long).

5. Is this article in English?
 - Yes
 - No (please specify) ________________________________
Title and Abstract Screening Level 2

Reviewer Comments (Add a Comment) __

Family History:
1. Does this citation FOCUS on the accuracy of family histories?
 ☐ Yes
 ☐ No

2. Is this citation about the capturing/collecting/collating or use of family history or in the PRIMARY CARE setting?
 ☐ Yes
 ☐ No => Exclude
 ☐ Can't Tell

Primary Care:
 Include: family physicians, general internists, obstetricians, gynecologists, nurses, nurse practitioners, physicians assistants, nutritionists, behaviouralists, etc.
 Exclude: Surgeons, oncologists, geneticists or genetics counselors.
Screening Instructions Level 2

Question 1: Answer yes if the paper describes any method of validation of the family histories (e.g. medical records, death certificate, histology report, etc.).

1. Does this citation FOCUS on the accuracy of family histories?
 □ Yes
 □ No

Question 2: Answer yes if the paper describes a tool for capturing/collaborating or assessing risk of cancer used in a primary care setting or applicable to primary care.

2. Is this citation about the capturing/collaborating or use of family history or in the PRIMARY CARE setting OR is it applicable to PRIMARY CARE?
 □ Yes
 □ No => Exclude
 □ Can't Tell

Primary Care:
 Include: family physicians, general internists, obstetricians, gynecologists, nurses, nurse practitioners, physicians assistants, nutritionists, behaviouralists, etc.
 Exclude: Surgeons, oncologists, geneticists or genetics counselors.
Full Text Screening 1

Reviewer Comments (Add a Comment) __

1. Year of publication 1990-2007:
 □ Yes
 □ No => Exclude

2. Is the population comprised of:
 □ Adults 18+
 □ Other => Exclude

3. Is the article in English?
 □ Yes
 □ No (Specify) => Exclude

4. Does the study report data?
 □ Yes (Any data, Quantitative data and also Qualitative description of tool development data)
 □ No (narrative description of a tool) => Exclude
 □ No (any other) => Exclude

5. Study type:
 □ Primary study
 □ Tool development and testing (reports data)
 □ Review => Exclude
 □ Other => Exclude

6. Does this article include the following cancers: (check all that apply)
 □ Breast cancer
 □ Ovarian cancer
 □ Prostate cancer
 □ Colo-rectal cancer
 □ Presents aggregate data for breast and ovarian cancers only => Include
 □ Presents aggregate date for two or more of the above cancers other than breast and ovarian cancer => Include
 □ Presents aggregate data for the above cancers and for other types of cancer => Exclude
 □ None of the above (specify) __ => Exclude

7. Does this article examine the accuracy of patients or members of the public in knowing and reporting their family history AND is the accuracy verified by a method such as relative's medical record, physician, death certificate, a population cancer registry?
 □ Yes => Include
 □ No => Include
8. If you answered yes to question 7, was the verification done for: (Check all that apply)
 - Positive family history only: please specify method of verification
 - Negative family history: please specify method of verification

9. Where did the probands/participants came from? (Check all that apply)
 - General population (e.g. from a population survey database)
 - Specialty clinic (including cancer centers, genetic counseling clinics etc.)
 - Primary care (as defined for this study)
 - Other (Specify) __

10. Does this original article contain a standardized method, approach or tool to collect, capture, collate information related to family history of disease or history of illness in other family members either self-reported or by any primary care practitioners
 - Yes => Include
 - No => Include

11. Does this original article contain a standardized method, tool or measure to help primary care health practitioners to identify, calculate, interpret, make clinical management decisions, promote the uptake of risk stratification and assessment for cancers of interest
 - Yes => Include
 - No => Include

12. Did you answer NO to questions 7, 10 and 11?
 - Yes => Exclude
 - No

13. Reviewer's comments: ________________________________
Full Text Screening 1: Guide

Please complete all of the questions in the form. Stop completing the form if you choose an exclusion answer.

Questions 1-3: We are only interested in studies that were published in English from 1990 to 2007, and that examine adult population.

1. Year of publication 1990-2007:
 - Yes
 - No => Exclude

2. Is the population comprised of:
 - Adults 18+
 - Other => Exclude

3. Is the article in English?
 - Yes
 - No (Specify) __________________ => Exclude

Question 4: We are interested in articles that report quantitative or qualitative (highly unlikely) data. Studies that present opinions or recommendations should be excluded.

4. Does the study report data?
 - Yes
 - No (narrative description of a tool) => Exclude
 - No (any other)=> Exclude

Question 5. The study must be a primary study or describe the development of a tool or standardized approach for collecting/capturing/collating family history or for risk assessment

5. Study type:
 - Primary study
 - Tool development and testing (reports data)
 - Review => Exclude
 - Other => Exclude

Question 6: We are only interested in studies about Breast, Ovarian, Prostate and Colorectal Cancers. If the study examines more than 1 cancer type and the results are given separately for each cancer of interest, it should be included. If the study examines breast and ovarian cancer and the results are presented in aggregated form it should be included. If the study examines the cancers of interest with or without other cancers and the results for all the cancers are presented together, it should be excluded.”
6. Does this article include the following cancers: (check all that apply)
- Breast cancer
- Ovarian cancer
- Prostate cancer
- Colo-rectal cancer
- Presents aggregate data for breast and ovarian cancers only => Include
- Presents aggregate date for two or more of the above cancers other than breast and ovarian cancer => Include
- Presents aggregate data for the above cancers for other types of cancers => Exclude
- None of the above (specify) __ => Exclude

Questions 7 and 8: If the family history is not verified by any method (i.e. medical record) answer NO to question 7 and go to question 9.

7. Does this article examine the accuracy, completeness, adequacy of patients or members of the public in knowing and reporting their family history AND is the accuracy verified by a method such as relative's medical record, physician, death certificate, a population cancer registry?
- Yes
- No

8. If you answered yes to question 7, was the verification done for: (Check all that apply)
- Positive family history only: please specify method of verification
- Negative family history: please specify method of verification

Question 9: We are interested in unselected general population and primary care clinics population. If the paper is about accuracy, then we are interested in primary care and specialty clinics population.

9. Where did the probands/participants came from?
- General population (e.g. from a population survey database)
- Specialty clinic (including cancer centers, genetic counseling clinics etc.)
- Primary care (as defined for this study)
- Other (Specify) __

Question 10: We are interested in collecting/collating/capturing/reporting family history in a systematic way (tool).

10. Does this original article contain a standardized method, approach or tool to collect, capture, collate information related to family history of disease or history of illness in other family members either self-reported or by any primary care practitioners.
- Yes
- No
Question 11: We are interested in a family history tool that helps primary care providers to identify/calculate/interpret/make management decisions/promote risk stratification and assessment for cancers of interest.

II. Does this original article contain a standardized method, tool or measure to help primary care health practitioners to identify, calculate, interpret, make clinical management decisions, promote risk stratification and assessment for cancers of interest.

☐ Yes
☐ No

Question 12: We are interested in papers that examine the accuracy of family history or that analyze a tool for collecting/capturing/collating family history or a tool to interpret family history or evaluate risks for specific cancers. If the paper doesn’t examine/analyze any of these then exclude it.

12. Did you answer NO to questions 7, 10 and 11?
 ☐ Yes => Exclude
 ☐ No

13. Reviewer's comments: __
1. To what research question does this article apply? (Check all that apply)
 - Question 1: Accuracy
 - Question 2: Tool
 - Question 3: Risk
 - A mutation or prediction model or a guideline or consensus statement
Guideline to Full Text Screening 2

1) To what research question does this article apply?

A) Question 1: Accuracy

Please check this if the article fulfills the question:

1) What is the evidence that patients or members of the public, accurately know and report their family history of each one of, or a combination of, the following cancers: breast cancer, ovarian cancer, prostate cancer, and colorectal cancer?

B) Question 2: Tool

Please check this if the article fulfills the question:

2) How well do the different systematic family history collection forms and tools, such as take-home tools, web-based tools, etc., improve non-systematic approaches to family history collection by primary care providers?
 a. Identify tools intended to improve family history collection by primary care providers.
 b. Compare these tools against current practice.

C) Question 3: Risk

Please check this if the article fulfills the question:

3) What tools exist to enable primary care providers to calculate, interpret, and act upon family history-based risk information, and how well do they perform?
 For each cancer of interest,
 a. Identify tools designed to facilitate calculation and/or interpretation of family history-based risk information, with the purpose of promoting recommended clinical actions.
 b. Assess the evidence for effectiveness of these tools in facilitating calculating and/or interpretation of family history-based information.
 c. Assess the evidence for effectiveness of these tools in promoting recommended clinical actions.
 d. For each tool, identify the evidence base for each recommendation.

D) None of these

Articles for example using record reviews where a tool is not used to ask patients about their family history will fall into this category as well as articles where the focus is surveying opinions of practitioners about collecting family history.

2) Was the focus of this article about:
Mutation models and guidelines are very often used as the backbone to build tools to collect family history.

A) A mutation prediction model (specify)

Examples of well known mutation models that you might encounter are: Frank,

B) A guideline/consensus statement (specify)

For example the Bethesda Guidelines for Hereditary Nonpolyposis Colorectal Cancer.

C) A hypothetical mutation model => Exclude

For example the authors hypothesize that along BRCA1 and BRCA2 there could be a BRCAu mutation. This does not correspond to real practice, therefore should be excluded.

3) If this article is about a tool, for what setting was it created?

A) Primary care

Please check if a setting where family physicians, general internists, obstetricians, gynecologists, nurses, nurse practitioners, physicians assistants, nutritionists, behaviourists operate.

B) Specialist genetic clinic

Please check if a setting where geneticists or genetics counselors operate

C) Other specialist clinic

Please check if a setting where surgeons, oncologists or other specialists operate

D) Research

Please check if it was a research setting

4) If the tool was created for a specialist or research setting, is it transferable to primary care?

If the tool is not applicable or usable in primary care it should be excluded. Please explain why in the space provided.
Generic Data Abstraction Form

Generic

1. Country of research:
 - [] US
 - [] Canada
 - [] UK
 - [] Australia
 - [] Switzerland
 - [] Germany
 - [] Italy
 - [] Netherlands
 - [] Sweden
 - [] Norway
 - [] Denmark
 - [] Finland
 - [] China
 - [] Spain
 - [] Other

2. If you answered "other" to question 1 please specify: ______________________

3. Type of article. (Check all that apply)
 - [] Journal article reporting a primary study
 - [] Conference proceedings
 - [] Thesis
 - [] Technical report
 - [] Letter with primary study data
 - [] Guideline
 - [] Other __

4. Study design. (Check only 1)
 - [] Randomized trial - experiment
 - [] Non-randomized trial
 - [] Prospective cohort
 - [] Other design with concurrent comparison group
 - [] Retrospective cohort study
 - [] Case control study
 - [] Time series study
 - [] Before-after study
 - [] Cross-sectional study
 - [] Non-comparative study
 - [] Tool development study
 - [] Other (specify) _______________________________________
 - [] Not reported
5. Other inclusion criteria: __

6. Participants. (Check all that apply)
 - General population
 - Patients from a Primary Care Provider Setting
 - Cancer patients
 - First degree relatives of a cancer patient
 - Primary care provider
 - Hospitalized patients
 - Patients from a cancer registry
 - Other (specify) __

7. Who was the provider who collected family history/used family history/risk assessment tool? (Check all that apply)
 - Family physician
 - General Internist
 - Obstetrician/Gynecologist
 - Nurse
 - Nurse practitioner
 - Physician's assistant
 - Nutritionist/Dietician
 - Psychologist
 - None (self-administered by patient)
 - Geneticist
 - Other (specify) __
 - Not reported

8. Does the paper describe the provider's attitudes towards collecting or using family history in clinical practice?
 - Yes
 - No

9. What was the method used to collect family history? (Check all that apply)
 - Face-to-face personal interview
 - Telephone interview
 - Self-completed survey
 - Mail
 - Other (specify) __
 - Not reported

10. How were data collected? (Check all that apply)
 - On paper medium
 - On electronic medium
 - Other (Specify) __
 - Not reported
11. Was the information collected using a: (Check all that apply)
 □ Pedigree format
 □ Non-pedigree format
 □ Other information format
 □ Not reported

12. Family history included: (Check all that apply)
 □ Parents
 □ Siblings
 □ Children
 □ Second degree relatives (uncles and aunts, nieces and nephews, grandparents)
 Specify:
 □ 3rd degree relatives and beyond (cousins, great aunts and great uncles) Specify:
 □ Other (specify) ____________________________
 □ Not reported

13. Reviewer's comments ________________________________
Accuracy Data Abstraction Form

1. Age was reported for: (Check all that apply)
 - Patients or probands (please specify age data as provided in the study)
 - Providers (please specify age data as provided in the study)
 - Relatives (please specify age data as provided in the study)
 - Other (Specify) __
 - Not reported

2. Method used to validate family history for AFFECTED relatives. (Check all that apply)
 - Personal interview with relatives
 - Self completed survey (site completed) with relatives
 - Self-completed survey (postal) with relatives
 - Relatives' medical record
 - Cancer registry
 - Death certificate
 - Physician's report
 - Other (specify) __
 - Not reported

3. If applicable: method used to validate family history of NON AFFECTED relatives. (Check all that apply)
 - Personal interview with relatives
 - Self-completed survey (site completed) with relatives
 - Self-completed survey (postal) with relatives
 - Relatives'' medical record
 - Cancer registry
 - Death certificate
 - Physician's report
 - Other (specify) __
 - Not reported

4. Setting where family history was collected. (Check all that apply)
 - Patient's home/Community setting
 - Primary care setting
 - Specialty clinic
 - Hospital
 - Genetic counseling clinic
 - Other __
 - Not reported

<table>
<thead>
<tr>
<th>5. Participants' distribution</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Number recruited at onset of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B-17
7. Included in analysis

8. Lost to follow-up (provide reason if available)

9. # of participants with POSITIVE family history for cancer in first degree relatives

10. # of participants with NEGATIVE family history for cancer in first degree relatives

11. What was the metric used to evaluate accuracy? (Check all that apply)
 - Sensitivity (#, %)
 - Specificity (#, %)
 - + Likelihood ratio (#, CI)
 - - Likelihood ratio (#, CI)
 - Diagnostic Odds Ratio (#, CI)
 - Summary ROC curves
 - Proportions
 - Other (specify) __

12. Were there outcomes measured other than accuracy (please specify)?
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6

13. Reviewers' comments __
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Unclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Was the spectrum of patients representative of the patients who will receive the test in practice?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Were selection criteria clearly described?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Is the reference standard likely to correctly classify the target condition?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Is the time period between reference standard and index test short enough to be reasonably sure that the target condition did not change between the tests?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Did the whole sample or a random selection of the sample, receive verification using a reference standard of diagnosis?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Did patients receive the same reference standard independent of the index test results?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Was the reference standard independent of the index test (i.e. the index test did not form part of the reference standard)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Was the execution of the index test described in sufficient detail to permit replication of the test?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Was the execution of the reference standard described in sufficient detail to permit its replication?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Were the index test results interpreted without knowledge of the results of the reference standard?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Were the reference standard results interpreted without knowledge of the results of the index test?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Were the same clinical data available when test results were interpreted as would be available when the test is used in practice?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Were uninterpretable/ intermediate test results reported?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Were withdrawals from the study explained?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Comments: ________________________________</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common Q2 & Q3 Data Abstraction Form

1. Was the tool developed: (Check all that apply)
 □ In Primary Care:
 □ In settings other than Primary Care, but it is applicable to Primary Care

2. If the tool was developed in settings other than Primary Care where was it developed? (Check all that apply)
 □ Specialist genetic clinic
 □ Other specialist clinic
 □ Research

3. What was the purpose of the tool? (Check all that apply)
 □ Clinical use
 □ Research

4. How was the tool being used? (Check all that apply)
 □ Proactively (everybody receives it)
 □ Reactively (received under patient query)
 □ As a method of data collection (i.e. not other purposes after data collection)

5. How are data presented after collection? (Check all that apply)
 □ Table
 □ Pedigree
 □ Other (Specify) ____________________________
 □ Not reported

6. Is the information collected integrated with an electronic record?
 □ Yes
 □ No

7. Age was reported for: (Check all that apply)
 □ Patients or probands (please specify age data as provided in the study)
 □ Providers (please specify age data as provided in the study)
 □ Relatives (please specify age data as provided in the study)
 □ Other (Specify) ____________________________
 □ Not reported

8. Setting where family history tool was used: (Check all that apply)
 □ Patient's home/Community setting
 □ Primary care general setting
 □ Primary care-specific clinic (e.g. good health clinic, preconceptual clinic, hormone replacement therapy clinic)
 □ Specialty clinic
 □ Hospital
 □ Genetic counseling clinic
9. Tool Format A. Was the tool designed to prompt information about: (Check all that apply)
- Parents
- Siblings
- Children
- Second degree relatives (aunts and uncles, nieces and nephews, grand parents)
- 3rd degree relatives and BEYOND (cousins, grand aunts and uncles)
- 2 generations
- 3 generations
- Not reported
- Other (specify) __

10. Tool Format B. Was the tool designed to collect information on relatives with: (Check all that apply)
- One specified cancer
- One syndrome cancer
- Any cancers
- Cancer and other conditions
- Other (specify) __
- Not reported

11. Tool Format C. Does the tool collect information about patient's affected relatives in order to: (Check all that apply)
- Identify exact relationship to proband
- Determine the age of diagnosis
- Determine the cause of death
- Determine the age of death
- Determine exact diagnosis
- Determine the site of cancer
- Other (specify) __
- Not reported

12. Tool Format C (a): Does the tool collect information about unaffected relatives in order to: (Check all that apply)
- Identify exact relationship to proband
- Determine the age of the diagnosis
- Identify ethnicity
- Determine the cause of death
- Determine the age of death
- Other __
- Not reported

13. Does the tool collect information on: (Check all that apply)
Mother's side relatives
Father's side relatives
Not specified
Participant's relevant past medical history
Other (specify) ________________________________
Not reported

14. Did the tool collect information about relatives' ethnic background?
 □ Yes
 □ No

15. Reviewers' comments ________________________________
Q2 Data Abstraction Tool

1. What are the tools/approaches for family history collection being compared?
 □ 1
 □ 2
 □ 3
 □ 4
 □ 5

<table>
<thead>
<tr>
<th></th>
<th>Tool 1</th>
<th>Tool 2</th>
<th>Tool 3</th>
<th>Tool 4</th>
<th>Tool 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Participants' distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. If applicable: Number of practices recruited</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Number of participants recruited at onset of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Included in analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Number or percentage of first degree relatives recorded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Number of percentage of second degree relatives recorded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. What was the metric used to evaluate accuracy? (Check all that apply)
 □ Sensitivity (#, %)
 □ Specificity (#, %)
 □ + Likelihood ratio (#, CI)
 □ - Likelihood ratio (#, CI)
 □ Diagnostic Odds Ratio (#, CI)
 □ Summary ROC curves
 □ Other (specify) __
 □ Not reported

9. Were there outcomes measured other than accuracy (please specify)?
 □ 1
 □ 2
 □ 3
 □ 4
 □ 5
 □ 6
 □ Not reported

10. Reviewers' comments __
Q3 Risk Tool Data Abstraction Form

1. Tool purposes: (Check all that apply)
 - Stratify risk
 - Calculate risk
 - Communicate risk to the patient
 - Define/suggest a clinical management strategy
 - Other (specify) ________________________________
 - Not reported

2. Was a consensus/guideline/model/decision aid used for this tool to measure risk?
 - Yes
 - No
 - Not applicable
 - Not reported

3. If you answered Yes to Question 2: What was the consensus/guideline/model/decision aid used for this family history tool to measure risk? (Check all that apply)
 - BRCAPRO
 - Claus
 - Gail
 - Ottman
 - Anderson
 - Taplin
 - Amsterdam
 - Bethesda
 - Ramsey
 - Other (specify)

4. Does the tool collect information on: (Check all that apply)
 - Mother's side relatives
 - Father's side relatives
 - Not specified
 - Participant's relevant past medical history
 - Other (specify) ________________________________
 - Not reported

5. What comparison interventions non/current practice, other tool were evaluated?
 - 1 ________________________________
 - 2 ________________________________
 - 3 ________________________________
 - 4 ________________________________
 - 5 ________________________________
 - None
 - Not reported
6. What were the outcomes used to assess the effectiveness of the tool?

7. Sensitivity (#, %)

8. Specificity (#, %)

9. Positive Likelihood ratio (#, CI)

10. - Likelihood ratio (#, CI)

11. Diagnostic Odds Ratio (#, CI)

12. Summary ROC curves

13. Other (specify)

14. Not reported

<table>
<thead>
<tr>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Participants' distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Included in analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. If applicable: Number of practices recruited</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Number of participants recruited at onset of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Lost to follow-up (provide reason if available)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Number or percentage of first degree relatives recorded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Number of percentage of second degree relatives recorded</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22. What was the timing used to measure the outcomes?

☐ 1
☐ 2
☐ 3
☐ 4
☐ 5

23. Reviewers' comments ________________________________
Internet Sites Accessed

Family History Tools Available on the Internet

<table>
<thead>
<tr>
<th>Title</th>
<th>Website address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of Health and Human Services (HHS)</td>
<td>Website accessed on June 28th, 2007.</td>
<td>Agencies involved in this project: Human Genome Research Institute (NHGRI), the Centers for Disease Control and Prevention (CDC), the Agency for Healthcare Research and Quality (AHRQ), the American Society of Human Genetics (ASHG), the Health Resources and Services Administration (HRSA), the National Society of Genetic Counselors and the Genetic Alliance.</td>
</tr>
<tr>
<td>Family Disease Checklist</td>
<td>http://www.genetests.org/servlet/access?id=8888892&key=TkJUzWfsXzb38xZ&fcn=y&fw=61uz&filename=/tools/concepts/checklist.html</td>
<td>Genetic Tools Website – Genetics Through a Primary Care Lens</td>
</tr>
<tr>
<td>Norwich Union Health Tree</td>
<td>http://www.norwichunion.com/healthtree/index.htm</td>
<td>Electronic Family History Builder (pedigree)</td>
</tr>
<tr>
<td>Title</td>
<td>Website address</td>
<td>Type</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>The Munroe-Meyer Institute for Genetics and Rehabilitation and the Eppley Cancer Center of the University of Nebraska Medical Center</td>
<td>http://app1.unmc.edu/gencancer/
Website accessed on June 28th, 2007.</td>
<td>Interactive Cancer Family Tree</td>
</tr>
<tr>
<td>Evanston Northwestern Center for Medical Genetics</td>
<td>http://enh.org/clinicalservices/medicalgenetics/mygenerations/
Website accessed on June 28th, 2007.</td>
<td>Interactive Family History Tools</td>
</tr>
<tr>
<td>Genetic Susceptibility to Breast and Ovarian Cancer: Assessment, Counseling and Testing Guidelines
American College of Medical Genetics Foundation</td>
<td>http://www.health.state.ny.us/nysdoh/cancer/obcancer/append11.htm
Website accessed on June 29th, 2007.</td>
<td>Sample Cancer Family History Questionnaire</td>
</tr>
<tr>
<td>Attribute</td>
<td>Original scoring range</td>
<td>Corrected scoring</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Length of tool | 1 = too short
3 = adequate size
5 = too long | Score 1 = 1
Score 2 = 3
Score 3 = 5
Score 4 = 3
Score 5 = 1 |
| Ease of completion | 1 = very difficult
5 = very easy | No change |
| Need specialist knowledge to complete FHT | 1 = need specialist knowledge
5 = complete without knowledge input | No change |
| Minimum collect details on ALL 1st degree relatives | 1 = no details collected
5 = details collected on all 1st degree relatives | No change |
| Clarity of family history collection including | 1 = poor clarity
5 = excellent clarity | No change |
| appropriate structure, layout & logical sequence | | |
Scoring of Available Family History Tool

<table>
<thead>
<tr>
<th>Title</th>
<th>Length</th>
<th>Ease</th>
<th>Specialist Knowledge</th>
<th>1st Degree Relatives</th>
<th>Clarity</th>
<th>TOTAL Score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>The U.S. Surgeon General’s Family History Initiative</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>AAFP Family Disease Checklist</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>AAFP Your Family Medical History</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>Ethnicity reported</td>
</tr>
<tr>
<td>American Medical Association Adult Family History Form</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>15</td>
<td>Ethnicity reported</td>
</tr>
<tr>
<td>Myriad Tests Family History Questionnaire</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Utah Department of Health</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NOT enough information on tool to evaluate</td>
</tr>
<tr>
<td>Norwich Union Health Tree</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>JamesLink: Personalized Cancer Risk Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Assessed as part of article by Sweet et al.*</td>
</tr>
<tr>
<td>The Munroe-Meyer Institute</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Evanston Northwestern Center for Medical Genetics</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NOT enough information on tool to evaluate</td>
</tr>
<tr>
<td>American College of Medical Genetics</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

FHTs were independently scored by 2 assessors & any discrepancy resolved through planned consensus discussion using the criteria above

Abbreviations: NE=not evaluated
<table>
<thead>
<tr>
<th>Title</th>
<th>Website address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Website address</td>
<td>Type</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>BRCA and Breast/Ovarian Cancer -- Disorder Setting</td>
<td>http://www.cdc.gov/genomics/gtesting/file/print/FBR/BCDisSet.pdf</td>
<td>Draft Genetic Test Review</td>
</tr>
<tr>
<td></td>
<td>Website accessed on June 28th, 2007.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Website accessed on June 28th, 2007.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Website accessed on June 28th, 2007.</td>
<td></td>
</tr>
<tr>
<td>Predictive Genetic Testing for Breast and Prostate Cancer</td>
<td>www.ccohta.ca</td>
<td>Canadian Coordinating Office for Health Technology Assessment (CCOHTA) Technology Report</td>
</tr>
<tr>
<td></td>
<td>Website accessed on June 28th, 2007.</td>
<td></td>
</tr>
<tr>
<td>Molecular Diagnosis for Hereditary Cancer Predisposing Syndromes: Genetic Testing and Clinical Impact</td>
<td>www.ccohta.ca</td>
<td>Canadian Coordinating Office for Health Technology Assessment (CCOHTA) Technology Report</td>
</tr>
<tr>
<td></td>
<td>Website accessed on June 28th, 2007.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Evidence Tables

Evidence Table 1: Characteristics of studies focusing on the accuracy of reporting cancer family history

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study Design and Criterion Standard</th>
<th>Study Population, Cancer Site and Clinical setting</th>
<th>Method of Family History Information Collection</th>
<th>Relatives Characteristics and Methods Used to Validate Family History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acheson† 2006</td>
<td>Study design: Case series</td>
<td>Patients: Patients scheduled for genetics consultation at university genetics centre</td>
<td>Method of collection: Computerized tool “Genetic Risk Easy Assessment Tool (GREAT)” and compared to face to face interview</td>
<td>Relatives characteristics: First degree relatives</td>
</tr>
<tr>
<td>Australia</td>
<td>Criterion standard: Interview with geneticist</td>
<td>Age: Mean 40 years (SD 12)</td>
<td>Medium: Paper and electronic</td>
<td>Affected relatives: Not verified due to reliability study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer site: Cancer free and cancer not specified</td>
<td>Format: Pedigree format</td>
<td>Unaffected relatives: Not verified due to reliability study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting: Genetics counseling centre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relatives characteristics: First degree relatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Affected relatives: Medical records; medical history questionnaires mailed to living relatives and surviving spouses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unaffected relatives: Medical records</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aitken‡ 1995</td>
<td>Study design: Case control</td>
<td>Patients: Patients undergoing colonoscopy at a teaching hospital; cases had hyperplastic or adenomatous polyp diagnosed at colonoscopy; controls were free of polyps</td>
<td>Method of collection: Mail survey</td>
<td>Relatives characteristics: First degree relatives</td>
</tr>
<tr>
<td>Australia</td>
<td>Criterion standard: Relatives self report; relatives doctors report; pathology reports; information from hospitals and death certificates</td>
<td>Age: 20 to 75 years</td>
<td>Medium: Paper</td>
<td>Affected relatives: Medical records</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer site: colorectal</td>
<td>Format: NR</td>
<td>Unaffected relatives: Medical records</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting: Hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anton-Culver‡ 1996</td>
<td>Study design: Consecutive case series</td>
<td>Patients: Population based cancer patients derivd from a surveillance program of Orange county registry; complete family history data available for 252 of 359 patients</td>
<td>Method of collection: Telephone interview using structured family history questionnaire</td>
<td>Relatives characteristics: First degree relatives</td>
</tr>
<tr>
<td>USA</td>
<td>Criterion standard: Cancer registry (although author states that personal interview is the standard relative to registry)</td>
<td>Age: 30 to 80 years</td>
<td>Medium: Paper and electronic</td>
<td>Affected relatives: Cancer registry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer site: Breast</td>
<td>Format: Interview (questions included types of cancer dates of diagnosis, birth and death of all informant family members)</td>
<td>Unaffected relatives: Cancer registry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting: Population based surveillance program in Orange county</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Study Design and Criterion Standard</td>
<td>Study Population, Cancer Site and Clinical setting</td>
<td>Method of Family History Information Collection</td>
<td>Relatives Characteristics and Methods Used to Validate Family History</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Breuer⁴ 1993 US</td>
<td>Study design: Non-comparative Criterion standard: Relatives medical/hospital records</td>
<td>Patients: Patients attending High Risk program (patients had positive history for breast cancer in relatives) Age: Mean age 45 years Cancer site: Breast Setting: Specialty clinic for high risk patients</td>
<td>Method of collection: Self completed questionnaire administered to patients prior to their first breast examination Medium: Paper Format: Not reported but after collection, data presented in a flow chart</td>
<td>Relatives characteristics: First and second degree Affected relatives: Personal interview with relatives and relatives medical record Unaffected relatives: NR</td>
</tr>
<tr>
<td>Eerola⁵ 2000 Finland</td>
<td>Study design: Non-comparative Criterion standard: Hospital records of the patients and relatives reported having cancer</td>
<td>Patients: Cancer patients diagnosed before the age of 40 and those with bilateral disease Age: 20 to 70 years Cancer site: Breast Setting: University hospital</td>
<td>Method of collection: Mailed questionnaires and interview Medium: Paper Format: Table</td>
<td>Relatives characteristics: First through to fifth degree Families traced back as far as the first healthy parents of the oldest known breast or ovarian cancer generation Affected relatives: Medical records, cancer registry and parish registry Unaffected relatives: Medical records, cancer registry and parish registry</td>
</tr>
<tr>
<td>Gaff⁶ 2004 Australia</td>
<td>Study design: Non-comparative Criterion standard: Cancer registry</td>
<td>Patients: Men free from cancer with a history of two or more relatives with prostate cancer or one relative with a history of prostate cancer before the age of 55; patients recruited from a population based study on prostate cancer Age: Mean 58 years (range 39 to 87) Cancer site: Prostate Setting: Patients home, community setting (mailed survey)</td>
<td>Method of collection: Face to face interview and mailed survey Medium: Paper Format: Non-pedigree format</td>
<td>Relatives characteristics: First, second and third degree relatives and beyond if available Affected relatives: Relatives medical records Unaffected relatives: NR</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Study Design and Criterion Standard</td>
<td>Study Population, Cancer Site and Clinical setting</td>
<td>Method of Family History Information Collection</td>
<td>Relatives Characteristics and Methods Used to Validate Family History</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Geller7 2001 USA</td>
<td>Study design: Cross-sectional</td>
<td>Patients: Random sample of patients undergoing mammography (from the Vermont Breast Cancer Surveillance System) where the patients had no personal history of breast cancer, and a negative mammography</td>
<td>Method of collection: Telephone interview</td>
<td>Relatives characteristics: First, second and third degree relatives</td>
</tr>
<tr>
<td></td>
<td>Criterion standard: Medical records</td>
<td>Age: <65 years</td>
<td>Medium: NR</td>
<td>Affected relatives: Personal interview with relatives, cancer registry - Vermont Breast Cancer Surveillance System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer site: Breast</td>
<td>Format: Pedigree</td>
<td>Unaffected relatives: Same as for affected relatives</td>
</tr>
<tr>
<td>Glanz8 1999 USA</td>
<td>Study design: Case-control</td>
<td>Patients: Population based case control study; first degree relatives of colon cancer patients</td>
<td>Method of collection: Mailed survey</td>
<td>Relatives characteristics: First degree relatives</td>
</tr>
<tr>
<td></td>
<td>Criterion standard: Hawaii Tumor Registry, Medical records (histology reports confirming the colorectal cancer diagnoses)</td>
<td>Age: <60 years; mean age of relatives was 50 years (range 19 to 84 years)</td>
<td>Medium: Paper</td>
<td>Affected relatives: Mailed survey to relatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer site: Colorectal</td>
<td>Format: NR</td>
<td>Unaffected relatives: Mailed survey to relatives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting: Patients home, community setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Katballe9 2001 Denmark</td>
<td>Study design: Non-comparative</td>
<td>Patients: Cancer patients derived from a prospective population based study</td>
<td>Method of collection: Interview by surgeon</td>
<td>Relatives characteristics: First and second degree relatives</td>
</tr>
<tr>
<td></td>
<td>Criterion standard: Medical file or autopsy reports; Danish Cancer Registry; death certificates</td>
<td>Age: NR</td>
<td>Medium: Paper</td>
<td>Affected relatives: Relatives medical record; cancer registry; death certificate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer site: Colorectal</td>
<td>Format: Pedigree</td>
<td>Unaffected relatives: NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting: Specialty surgical clinic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Study Design and Criterion Standard</td>
<td>Study Population, Cancer Site and Clinical setting</td>
<td>Method of Family History Information Collection</td>
<td>Relatives Characteristics and Methods Used to Validate Family History</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Kerber10 1997 USA</td>
<td>Study design: Case control</td>
<td>Patients: General population and from primary care setting</td>
<td>Method of collection: Face to face interview and computer assisted</td>
<td>Relatives characteristics: First degree relatives</td>
</tr>
<tr>
<td></td>
<td>Criterion standard: Utah Population Database cancer registry</td>
<td>Age: 30 to 79 years</td>
<td>Medium: Electronic</td>
<td>Affected relatives: Utah Cancer registry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer site: Breast, ovarian, prostate, colorectal</td>
<td>Format: NR</td>
<td>Utah Population Database</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting: Patients home in a community setting</td>
<td></td>
<td>Unaffected relatives: Utah Population Database</td>
</tr>
<tr>
<td>King11 2002 USA</td>
<td>Study design: Non-comparative</td>
<td>Patients: Cancer patients</td>
<td>Method of collection: Face to face interview: type of collection not specified</td>
<td>Relatives characteristics: First degree relatives</td>
</tr>
<tr>
<td></td>
<td>Criterion standard: Medical records and death certificates</td>
<td>Age: NR</td>
<td>Medium: Paper</td>
<td>Affected relatives: Relatives medical record</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer site: Prostate</td>
<td>Format: NR</td>
<td>Unaffected relatives: NR</td>
</tr>
<tr>
<td>Kupfer12 2006 USA</td>
<td>Study design: Non-comparative</td>
<td>Patients: Patients at high risk for colorectal cancer</td>
<td>Method of collection: Telephone interview</td>
<td>Relatives characteristics: First degree relatives</td>
</tr>
<tr>
<td></td>
<td>Criterion standard: Genetic counselor interview; pathology and operative records hospital admission and discharge summaries, death certificates and autopsy reports</td>
<td>Age: NR</td>
<td>Medium: NR</td>
<td>Affected relatives: Relatives medical record; pathology and operative reports, hospital admissions and discharge summaries, death certificate, autopsy reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer site: Colorectal</td>
<td>Format: Pedigree</td>
<td>Unaffected relatives: NR</td>
</tr>
<tr>
<td>Mitchell13 2004 UK</td>
<td>Study design: Case control</td>
<td>Patients: Controls, general population and spouses of cases controls Cancer patients: colorectal cancer cases</td>
<td>Method of collection: Face to face interview conducted by genetics nurse</td>
<td>Relatives characteristics: First and second degree relatives</td>
</tr>
<tr>
<td></td>
<td>Criterion standard: Cancer registry</td>
<td>Age: Mean age 64 years</td>
<td>Medium: Paper</td>
<td>Affected relatives: Scottish Cancer Registry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cancer site: Colorectal</td>
<td>Format: Pedigree</td>
<td>Unaffected relatives: Scottish Cancer Registry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Setting: Regional hospitals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Study Design and Criterion Standard</td>
<td>Study Population, Cancer Site and Clinical setting</td>
<td>Method of Family History Information Collection</td>
<td>Relatives Characteristics and Methods Used to Validate Family History</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Parent14 1995 Canada</td>
<td>Study design: Case control</td>
<td>Patients: Cases: French Canadian women recently diagnosed with cancer Controls: General population
Age: Mean age 59 years, (range 30 to 79 years)
Cancer site: Breast cancer
Setting: Patient's home, community setting</td>
<td>Method of collection: Face to face interview
Medium: NR
Format: NR</td>
<td>Relatives characteristics:
First degree relatives
Affected relatives:
Relatives medical record
Unaffected relatives: NR</td>
</tr>
<tr>
<td>Schneider16 2004 USA</td>
<td>Study design: Prospective cohort
Criterion standard: Medical records or death certificates</td>
<td>Patients: First degree relatives of a Li-Fraumeni Syndrome cancer patient or an hereditary breast ovarian cancer syndrome patient
Age: >40
Cancer site: Breast and ovarian
Setting: NR</td>
<td>Method of collection: Self completed survey
Medium: Paper
Format: Pedigree</td>
<td>Relatives characteristics:
First and second degree relatives
Affected relatives:
Relatives medical record, death certificate
Unaffected relatives: NR</td>
</tr>
<tr>
<td>Sijmons17 2000 Netherlands</td>
<td>Study design: Non-comparative
Criterion standard: Geneticist interview</td>
<td>Patients: Referred to genetic counseling clinic with and without cancer
Age: NR
Cancer site: Breast, ovarian, colorectal
Setting: Patients home and genetic clinic</td>
<td>Method of collection: Paper and interview
Medium: Paper
Format: Pedigree</td>
<td>Relatives characteristics:
First to fourth degree relatives
Affected relatives:
Medical records
Unaffected relatives: NR</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Study Design and Criterion Standard</td>
<td>Study Population, Cancer Site and Clinical setting</td>
<td>Method of Family History Information Collection</td>
<td>Relatives Characteristics and Methods Used to Validate Family History</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Theis 1994 Canada</td>
<td>Study design: Non-comparative</td>
<td>Patients: Cancer patients</td>
<td>Method of collection: Face to face interview and self completed survey (mail)</td>
<td>Relatives characteristics: First and second degree relatives</td>
</tr>
<tr>
<td></td>
<td>Criterion standard:</td>
<td>Age: Range 31 to 70 years</td>
<td>Medium: Paper</td>
<td>Affected relatives: Personal interview with relatives</td>
</tr>
<tr>
<td></td>
<td>Relatives self report, medical</td>
<td>Cancer site: Breast, ovarian, prostate and</td>
<td>Format: NR</td>
<td>Unaffected relatives: A random sample of 100 first-degree relatives reported as unaffected by cancer submitted to the Ontario Cancer Registry in order to estimate under-reporting</td>
</tr>
<tr>
<td></td>
<td>records and Ontario Cancer</td>
<td>colorectal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Registry</td>
<td>Setting: Patients home, community and clinical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weinrich 2002 USA</td>
<td>Study design: Non-comparative</td>
<td>Patients from a cancer registry and the African American Hereditary Cancer Study</td>
<td>Method of collection: Face to face interview first time Telephone interview done one year later</td>
<td>Relatives characteristics: First, second and third degree relatives and beyond</td>
</tr>
<tr>
<td></td>
<td>Criterion standard:</td>
<td>Age: Range 40 to 70 years, mean age 50.4 years (SD=7.6)</td>
<td>Medium: NR</td>
<td>Affected relatives: Relatives medical record</td>
</tr>
<tr>
<td></td>
<td>Hospital records</td>
<td>Cancer site: Prostate</td>
<td>Format: One Question “Have any of your men blood relatives ever had prostate cancer?”</td>
<td>Unaffected relatives: NR</td>
</tr>
<tr>
<td>Ziogas 2003 USA</td>
<td>Study design: Non-comparative</td>
<td>Patients recruited from population based and clinic based family registries of breast, ovarian and colorectal cancer</td>
<td>Method of collection: Telephone interview</td>
<td>Relatives characteristics: First degree, second degree, third degree relatives and beyond</td>
</tr>
<tr>
<td></td>
<td>Criterion standard:</td>
<td>Age: NR</td>
<td>Medium:</td>
<td>Affected relatives: Personal interview with relatives</td>
</tr>
<tr>
<td></td>
<td>Pathology reports, tumor tissue</td>
<td>Cancer site: Breast, ovarian, prostate,</td>
<td>Electronic (interviewers entered data into Genetics Registry In System (GRIS))</td>
<td>Unaffected relatives: Personal interview with relatives</td>
</tr>
<tr>
<td></td>
<td>samples or clinical records;</td>
<td>colorectal</td>
<td>Format: Pedigree produced from GRIS</td>
<td>Self completed survey, medical records, death certificate</td>
</tr>
<tr>
<td></td>
<td>relatives self-reports; death</td>
<td>Setting: Patients home, community setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>certificates</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: GRIS=Genetics Registry in System; NR=not reported; SD=standard deviation
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acheson 2006 USA</td>
<td>Participants: Patients attending genetics clinic, mean age 40 yrs</td>
<td>Tool: Genetic Risk Easy Assessment Tool (GREAT)</td>
<td>PMH: Risk factors for cancer</td>
<td>Side of family identified: Both</td>
<td>FH comparator Genetics interview</td>
<td>Tool vs comparator:</td>
</tr>
<tr>
<td></td>
<td>Setting: Cancer genetics clinics</td>
<td>User: Patient</td>
<td>Strategy: General enquiry about 1DR, 2DR and first cousins</td>
<td>Relatives identified: 1DR, 2DR, 1st cousin</td>
<td>Sample size for analysis: n=120</td>
<td>1. Mean % per family of all members recognized</td>
</tr>
<tr>
<td></td>
<td>Cancer type: 24 types of cancer excluding non-melanoma skin cancer</td>
<td>Medium: Automated telephone interview</td>
<td>Information on affected relatives: Primary site of cancer, age of diagnosis, cause of death, age of death</td>
<td>Information on unaffected relatives: Age at death, exact relationship to informant</td>
<td>Sample size calculation for FH outcomes: No</td>
<td>a. 1DR - 98.5 v 97.3 (p > 0.05)</td>
</tr>
<tr>
<td></td>
<td>Tool implementation: Mixed proactive and reactive</td>
<td>Output format: Pedigree</td>
<td>Information on affected relatives only if they had cancer</td>
<td></td>
<td></td>
<td>b. 2DR - 93.9 v 74.3 (p < 0.001);</td>
</tr>
<tr>
<td></td>
<td>Design: Non-controlled comparator study</td>
<td>Integrated with e-record: No</td>
<td></td>
<td></td>
<td></td>
<td>c. First cousin - 94.5 v 48.6 (p > 0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Agreement on risk categories</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a. kappa=0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b. correlation= 0.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Test-retest reliability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a. 1DR 97%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b. 2DR 93%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c. cancer 98%</td>
</tr>
</tbody>
</table>

Data relating to performance as a FHxT reported here pertain only to the RAGS prototype tool 21. For performance of GRAIDS as a RAT, please see Evidence Table Q3.

Abbreviations: CI = confidence interval; DR = degree relative; FH = family history; FHxT = Family History Tool; GP = general practitioner; NR = not reported; PMH = past medical history; RAT = risk assessment tool; vs = versus; yrs = years
Evidence Table 2a. Eligible studies evaluating family history tools applicable to primary care (18 tools from 22 publications) (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamin<sup>22</sup>
UK
2003</td>
<td>Participants: Patients attending joint surgical/genetics breast screening clinic, median age 38 yrs
Setting: Specialist genetic clinic
Cancer type: Breast
Design: Uncontrolled prospective cohort
Tool implementation: Reactive</td>
<td>Tool: Family history questionnaire
User: Patient
Medium: Paper
Output format: NR
Integrated with e-record: No</td>
<td>PMH: NR
Strategy: Direct questions for details of relatives with breast cancer; details of cancers; number of relatives with ovarian and colorectal cancers; note of relatives with sarcoma, leukemia or brain tumor</td>
<td>Side of family identified: Both
Relatives identified: 1DR, 2DR, 3DR
Information on affected relatives: Age, diagnosis and site, risk of developing breast cancer
Information on unaffected relatives: NR</td>
<td>FH comparator: Genetics interview
Sample size for analysis: n=152
Sample size calculation for FH outcomes: No</td>
<td>Tool vs comparator:
1. Sensitivity = 95% (95% CI 89 to 99%)
2. Specificity = 96% (95% CI 79 to 100%)</td>
</tr>
<tr>
<td>Braithwaite<sup>23</sup>
UK
2005</td>
<td>Participants: Women with family history of breast cancer, age ≥18 yrs
Setting: Genetics clinic
Cancer type: Breast
Tool implementation: Reactive
Design: Randomized controlled trial</td>
<td>Tool: Genetic Risk Assessment in the Clinical Environment (GRACE)
User: Patient
Medium: Electronic
Output format: Pedigree
Integrated with e-record: NR</td>
<td>PMH: Relevant past medical history
Strategy: Not clear</td>
<td>Side of family identified: Both
Relatives identified: 1DR, 2DR
Information on affected relatives: Site of cancer
Information on unaffected relatives: NR</td>
<td>FH comparator: Genetics interview
Sample size for analysis: NA
Sample size calculation for FH outcomes: NA</td>
<td>NA</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
</tbody>
</table>
Evidence Table 2a. Eligible studies evaluating family history tools applicable to primary care (18 tools from 22 publications) (continued)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emery*21 2000</td>
<td>Participants: Family physicians</td>
<td>Tool: Risk Assessment in Genetics (RAGS) (prototype) Genetic Risk Assessment in an Intranet and Decision Support (GRAIDS)</td>
<td>PMH: Reported</td>
<td>Side of family identified: Both</td>
<td>From Emery*21 2000 FH comparator:</td>
<td>Tool vs comparator:</td>
</tr>
<tr>
<td>Emery 28 2005</td>
<td>Cancer type: Breast colorectal</td>
<td>Medium: Electronic</td>
<td>Information on affected relatives: Exact relationship to informant, age of diagnosis, age of death</td>
<td>Information on unaffected relatives: NR</td>
<td>2. Modified current practice (Cyrillic pedigree tool)</td>
<td>2. Preferred method RAGS - 75% Cyrillic – 8% Pen & paper - 17%</td>
</tr>
<tr>
<td>Emery*29 2007</td>
<td>Tool implementation: Reactive</td>
<td>Output format: Pedigree</td>
<td>Sample size for analysis: completing pedigrees for 6 simulated patients per arm n=36</td>
<td>Sample size calculation for FH outcomes: No</td>
<td>3. Ease of use RAGS - 86% Cyrillic – 8% Pen & paper - 6%</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>Design: Randomized cross-over trial with simulated cases*21</td>
<td>Integrated with e-record: RAGS – no GRAIDS – potentially, software connected to NHS intranet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fisher30 2003</td>
<td>Participants: Repeat screening mammogram</td>
<td>Tool: Family history questionnaire</td>
<td>PMH: NR</td>
<td>Side of family identified: Both</td>
<td>FH comparator: Genetic interview</td>
<td>Tool vs comparator:</td>
</tr>
<tr>
<td>Australia</td>
<td>Setting: Breast screening clinic</td>
<td>User: Patient</td>
<td>Strategy: Direct questions on breast cancer and age of diagnosis in specific relatives (1DR, DR) - linked with guideline recommendation</td>
<td>Relatives identified: 1DR, 2DR</td>
<td>Sample size for analysis: n=89</td>
<td>1. Agreement on risk categorization on basis of FH data (population v elevated) - 100% agreement</td>
</tr>
<tr>
<td></td>
<td>Cancer type: Breast, Ovarian</td>
<td>Medium: Paper</td>
<td>Information on affected relatives: Relationship to informant, age of exact diagnosis</td>
<td>Information on unaffected relatives: NR</td>
<td>Sample size calculation for FH outcomes: No</td>
<td>2. Errors in completing FHQ risk category not identified - 5%</td>
</tr>
<tr>
<td></td>
<td>Tool implementation: Reactive</td>
<td>Output format: NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>------------------------</td>
<td>----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>Setting: Clinic Cancer type: Breast, Colorectal, ovarian</td>
<td>User: Patient</td>
<td>Strategy: Not clear - focus on specific conditions</td>
<td>Relatives identified: NR</td>
<td>Sample size for analysis: Tool group n=39 Interview group n=39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tool implementation: Proactive Design: Quasi-randomized controlled trial</td>
<td>Medium: Paper</td>
<td>Information on affected relatives: NR</td>
<td>Information on unaffected relatives: NR</td>
<td>Sample size calculation for FH outcomes: No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Participants: Cancer patients, median 58 yrs Setting: Gastrointestinal cancer clinic Cancer type: Colorectal Tool implementation: Reactive Design: Cohort study</td>
<td>Tool: Family history questionnaire User: Patient Medium: Paper</td>
<td>PMH: Reported Strategy: Not clear</td>
<td>Side of family identified: Both Relatives identified: 1DR, 2DR, 3DR Information on affected relatives: Age of diagnosis; site of cancer Information on unaffected relatives: NR</td>
<td>FH comparator: Patient charts</td>
<td></td>
</tr>
<tr>
<td>Grover32 2004 USA</td>
<td></td>
<td>Output format: NR</td>
<td>Integrated with e-record: No</td>
<td></td>
<td>Sample size for analysis: n=387</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sample size calculation for FH outcomes: No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C-11
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>House³³ 1999 UK</td>
<td>Participants: All patients on a single GP list, mean 44 yrs
Setting: Family practice
Cancer type: Colorectal
Tool implementation: Proactive
Design: Cross-sectional survey</td>
<td>Tool: Family history questionnaire
User: Patient
Medium: Paper
Output format: Tabular
Integrated with e-record: No</td>
<td>PMH: Colorectal polyp or cancer, radiotherapy or abdominal operation
Strategy: Direct questions about PMH or FH of 1DRs with colorectal cancer or polyp; if positive FH it specifies details on affected 1DRs and FH for other specified cancers</td>
<td>Side of family identified: NR
Relatives identified: 1DR
Information on affected relatives: Exact relationship to informant; age of diagnosis; cause of death; age of death; exact diagnosis; site of cancer</td>
<td>FH comparator: None
Sample size for analysis: NA
Sample size calculation for FH outcomes: NA</td>
<td>4. 834 cancers reported in FHxT, 265 (32%) NR in charts</td>
</tr>
<tr>
<td>Hughes³⁴ 2003 USA</td>
<td>Participants: Patients in an internal medicine practice, age 21-80 yrs
Setting: Internal medicine
Cancer type: Breast, ovarian
Tool implementation:</td>
<td>Tool: Family history questionnaire
User: Patient
Medium: Paper
Output format: NR</td>
<td>PMH: Breast/ovarian cancer, ethnicity
Strategy: Not clear; set of specific questions and tick boxes</td>
<td>Side of family identified: Both
Relatives identified: 1DR, 2DR
Information on affected relatives: Exact relationship to informant; age of diagnosis; exact diagnosis</td>
<td>FH comparator: None
Sample size for analysis: NA
Sample size calculation for FH outcomes: NA</td>
<td>NA</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>-----------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Proactive Design: Cross-sectional survey</td>
<td>Integrated with e-record: No</td>
<td>Information on unaffected relatives: Not clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurt<sup>35</sup> 2001 US</td>
<td>Participants: Female relatives of cancer patients, mean age 41yrs</td>
<td>Tool: Family history questionnaire</td>
<td>PMH: Breast cancer risk factors, ethnicity</td>
<td>Side of family identified: NR</td>
<td>FH comparator: None</td>
<td>NA</td>
</tr>
<tr>
<td>Setting: Comprehensive cancer centre</td>
<td>User: Patient</td>
<td>Strategy: Not clear</td>
<td>Relatives identified: 1DR, 2DR</td>
<td>Sample size for analysis: NA</td>
<td>Sample size calculation for FH outcomes: NA</td>
<td></td>
</tr>
<tr>
<td>Cancer type: Breast</td>
<td>Tool: Family history questionnaire, based on Stemmerman structured interview</td>
<td>Information on affected relatives: Exact relationship to informant: age of diagnosis; age of death; exact diagnosis</td>
<td>Information on unaffected relatives: NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool implementation: Proactive</td>
<td>User: Patient</td>
<td>PMH: NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design: Cohort study</td>
<td>Medium: Paper</td>
<td>Side of family identified: Both</td>
<td>FH comparator: Genetics interview</td>
<td>Sample size for analysis: n=96</td>
<td>Sample size calculation for FH outcomes: With 53 participants, 80% power to detect a difference in marginal proportions in the amount of unspecified data between the two</td>
<td></td>
</tr>
<tr>
<td>Kelly<sup>56</sup> 2007 USA</td>
<td>Participants: Cancer patients, mean age 57.6 yrs</td>
<td>Tool: Family history questionnaire, based on Stemmerman structured interview</td>
<td>PMH: NR</td>
<td>Side of family identified: Both</td>
<td>FH comparator: None</td>
<td>NA</td>
</tr>
<tr>
<td>Setting: Ambulatory gastrointestinal oncology clinic</td>
<td>User: Patient</td>
<td>Strategy: Direct questions on affected relatives</td>
<td>Relatives identified: 1DR</td>
<td>Sample size for analysis: n=96</td>
<td>Sample size calculation for FH outcomes: With 53 participants, 80% power to detect a difference in marginal proportions in the amount of unspecified data between the two</td>
<td></td>
</tr>
<tr>
<td>Cancer type: Any type</td>
<td>Tool: Family history questionnaire, based on Stemmerman structured interview</td>
<td>Information on affected relatives: Exact relationship to informant: age of diagnosis, site of cancer</td>
<td>Information on unaffected relatives: NA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool implementation: Proactive</td>
<td>User: Patient</td>
<td>PMH: NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design: Cohort study</td>
<td>Medium: Paper</td>
<td>Side of family identified: Both</td>
<td>FH comparator: Genetics interview</td>
<td>Sample size for analysis: n=96</td>
<td>Sample size calculation for FH outcomes: With 53 participants, 80% power to detect a difference in marginal proportions in the amount of unspecified data between the two</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output format: NR</td>
<td>Information on unaffected relatives: NA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrated with e-record: No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Missing data age – 5/53 9.4%)
- diagnosis – 6/53 (11.3%)
- age of diagnosis – 7/53 (13.2%)
|-----------------------|----------------------------------|---|---|----------------------------|---------------------------|-----------------------------|
| Murff37 2007 USA | Participants: Internal medicine patients, mean age 38.9 yrs
Setting: Internal medicine
Cancer type: Breast, ovarian, colorectal
Tool implementation: Proactive
Design: Cross-sectional survey | Tool: Family history questionnaire
User: Patient
Medium: Paper
Output format: Table
Integrated with e-record: Yes | PMH: Personal medical history
Strategy: Identification of specified relatives, inserted into table where diagnoses and details entered | Side of family identified: Both
Relatives identified: 1DR, 2DR
Information on affected relatives: Relationship to informant, age of diagnosis, site of cancer
Information on unaffected relatives: NR | FH comparator: Patient charts
Sample size for analysis: n=541
Sample size calculation for FH outcomes: No | Tool vs comparator:
1. # 1DR relatives reported to have cancer
a. colorectal = 19 vs 11
b. breast = 64 vs 51
c. ovarian = 11 vs 6
2. # 2DR relatives reported to have cancer
a. colorectal = 79 vs 31
b. breast = 184 vs 52
c. ovarian = 26 vs 5 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Schroy [38] 2005 US</td>
<td>Participants: Internal medicine residents Setting: Internal medicine clinic Cancer type: Colorectal Tool implementation: Proactive Design: Cluster randomized trial</td>
<td>Tool: PDA program User: Professional Medium: Electronic Output format: NR Integrated with e-record: NR</td>
<td>PMH: NR Side of family identified: NR Strategy: Prompts for information on affected relatives Relatives identified: NR Information on affected relatives: Age of diagnosis Information on unaffected relatives: NR</td>
<td>FH comparator: Medical charts Sample size for analysis: Tool group - residents n=33, patients n=57 Control group – residents n=48, patients n=69 Sample size calculation for FH outcomes: No</td>
<td>Tool group vs control group 1. % patients report physician asked about family history of colorectal cancer: Tool group - 33% Control group - 25%, p=0.30, 2. % patients report physician asked about family history of colorectal adenomas: Tool group - 25% Control group - 24%, p=0.89</td>
<td></td>
</tr>
<tr>
<td>Sweet [39] 2002 USA</td>
<td>Participants: Patients attending oncology clinic Setting: Cancer centre clinic Cancer type: Breast, ovarian, prostate, colorectal Tool implementation: Mixed proactive and reactive Design: Cross-sectional survey</td>
<td>Tool: Jameslink User: Patient Medium: Electronic Output format: NR Integrated with e-record: NR</td>
<td>PMH: PMH of cancer and ethnicity Side of family identified: Both Strategy: Not clear Relatives identified: 1DR, 2DR, some 3DR Information on affected relatives: Age of diagnosis exact diagnosis Information on unaffected relatives: NR</td>
<td>FH comparator: Patient charts Sample size for analysis: n=362 Sample size calculation for FH outcomes: No</td>
<td>Tool vs comparator: 1. Of 362 patients whose family histories captured by tool, only 308 (85%) had some FH recorded in medical records 2. Discrepancies were noted between family histories captured by tool and those recorded in medical records</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Yang40 1998 USA</td>
<td>Participants: Women in an ongoing cancer prevention prospective mortality study, median age in 1982 56 yrs</td>
<td>Tool: Family history questions embedded in health questionnaire</td>
<td>PMH: Recorded as part of main questionnaire</td>
<td>Side of family identified: NR</td>
<td>FH comparator: None</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Setting: Epidemiological cohort study</td>
<td>User: Patient</td>
<td>Strategy: Direct questions on parents, siblings, details of cancers in relatives</td>
<td>Relatives identified: NR</td>
<td>Sample size for analysis: NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer type: Breast</td>
<td>Medium: Paper</td>
<td>Information on affected relatives: relationship to informant, age of diagnosis, age of death</td>
<td>Information on unaffected relatives: NR</td>
<td>Sample size calculation for FH outcomes: NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tool implementation: NA</td>
<td>Output format: NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design: Cross-sectional data from cohort study</td>
<td>Integrated with e-record: NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study purpose: To assess the validity of self-reported family histories of colorectal cancer patients by comparing patients' reports with their first degree relatives' medical records</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants + Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Tool evaluation: Other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aitken 1995 Australia</td>
<td>Patients referred to hospital Practitioners: Questionnaire was self-administered by patients Setting where developed: Colonoscopy department from a hospital Applicability: Reviewed FHxT; not applicable to primary care Setting where used: Community setting Cancer type: Colorectal Study design: Cohort study (prospective)</td>
<td>Purpose: Clinical use; proactive Method used to collect FH: Self-completed mail survey Format: NR Medium: Paper Integrated with e-record: N/A (validation study)</td>
<td>Age of Participants: NR Details on Relatives: Mother's side relatives; Father's side relatives Participant PMH: NR Relatives identified: 1DR Strategy for FH enquiry: General enquiry about 1DR relative’s age and age of death, specific enquiry about condition</td>
<td>Relatives’ Cancers and other conditions: Colorectal and any cancers or bowel polyp or obstruction Information on affected relatives: Determine the age of diagnosis, cause and of death Information on unaffected relatives: NR</td>
<td>Tools compared: Family and personal medical history questionnaire was mailed to the cases and controls, compared to relatives medical records & death certificates # of participants recruited in each group: n=419 patients # of participants in analysis: n=419 patients # of first degree relatives: n=618 # of second degree relatives: NR</td>
</tr>
</tbody>
</table>

+details collected on participants and relatives; † extent of details collected on i) relatives’ conditions ii) affected relatives iii) unaffected relatives; * a) comparison with clinical genetics pedigree (i.e. gold standard) b) other tool; ^other measures - accuracy, validity, reliability

Abbreviations: BE = best estimate; Br Ca= Breast Cancer; Ca=Cancer; CASH=Cancer and Steroid Hormone; CFHF= Comprehensive Family History Form CR = cancer registry; CRC=colorectal cancer; Cyr = cyrillic; DARR= Diet, Activity and Reproduction in Colon Cancer; DOB=date of birth; DQ=direct question; DR=degree relative; EsPeR= Personalized Estimate of Risks; FCAT = familial cancer assessment tool; FH=family history; FHQ=family history questionnaire; FHxT = family history tool; GCI = genetic counselor interview; GI = genetic interview; GNI = genetic nurse interview; GP=general practitioner; GRACE = Genetic Risk Assessment in the Clinical Environment; GRAIDS = Genetic Risk Assessment in an Intranet and Decision Support; GRIS= Genetics Registry In System; HNPCC= Hereditary Non-polyposis Colorectal Cancer; IM=Internal Medicine; MR = Medical Record; NICE= National Institute for Clinical Excellence; NR = NR; Ov Ca= Ovarian Cancer; PAC= probability of agreement of cancer; PANc= probability of agreement of no cancer PC = primary care; PDA=Personal Digital Assistant; PMH=past medical history; PSA = Prostate-Specific Antigen; PSI = physician structured interview; RR = relative risk; RAGs = Risk Assessment in Genetics; TRACE=Trial of genetic assessment in breast cancer

C-17
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives</th>
<th>Tool structure: Other measures †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
</table>
| Andrieu41, 2004 France | Patients: Selected primary care/ community-based population: Patients from a population cancer registry contacted via GP Practitioners: Trained interviewer Setting where developed: Research Applicability: FHX not available for review Setting where used: Community setting Cancer type: Colorectal Study design: Other | Purpose: Clinical use; proactive Method used to collect FH: Face to face personal interview using structured FHQ Format: NR Medium: NR Integrated with e-record: No | Age of participants: NR Details on Relatives: Side of family identified: NR Participant PMH: NR Relatives identified: 1DR; 2DR Strategy for FH enquiry: General enquiry about all 1DR and 2DR - DOB and age of death Specific enquiry of DQ each relatives medical history of cancer, age and place of diagnosis | Relatives’ Cancers and other conditions: Colorectal (also site specified), 21 other cancers documented: uterus-SAI, ovaries, breast, prostate, testes, stomach, pancreas, urinary bladder, kidney, thyroid, leukemia, melanoma Information on affected relatives: Identify exact relationship to informant, determine the age of diagnosis, determine the cause of death, determine the age of death, determine the site of cancer Information on unaffected relatives: NR | Tools compared: Family history questionnaire Compared to details on relatives in cancer registry & medical records # of participants recruited in each group: n=767 # of participants in analysis: n=766 (761 independent families) # of first degree relatives: Group 1: n=6160 # of second degree relatives: n=4352 | Metric used to evaluate the adequacy of the tool: % Confirmed diagnosis (Table 2) Other outcomes measured: Familial risk of developing CRC: 1.54 (95% CI 1.26-1.86), for first degree relatives RR 1.71 (95% CI 1.35-2.13) and for second degree relatives (RR 1.22 (95% CI 0.82-1.76)
Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anton-Culver³ 1996 USA</td>
<td>Study purpose: 1) To evaluate the validity of family history information on breast cancer in mother and sisters of breast cancer patients from a population-based cancer registry (CR) 2) To characterize a consecutive series of breast cancer patients on the basis of reported FH: sporadic, familial and potentially hereditary forms</td>
<td>Patients: Selected primary care/community-based population: Patients from a cancer registry Practitioners: Trained interviewers, (Background NR) Setting where developed: Research: cancer registry Applicability: Reviewed FHxT; not applicable to primary care Setting where used: Patient's home/Community setting: telephone interview Cancer type: Breast Study design: Non-comparative study (case series) Purpose: research; proactive Method used to collect FH: Telephone interview (From original FH-T): using structured FHQ Format: NR; Table Medium: Paper and electronic Integrated with e-record: Yes</td>
<td>Age of participants: Patients: 30-80 years or older Details on Relatives: Side of family identified: Mother's side relatives: mothers and sisters Participant PMH: NR Relatives identified: 1DR Strategy for FH enquiry: General enquiry about “All relatives” DOB & age of death. Specific enquiry: DQ each relatives medical history of cancer, age of diagnosis</td>
<td>Relatives’ Cancers and other conditions: Breast cancer Information on affected relatives: Identify exact relationship to informant, determine the age of diagnosis, determine the cause of death, determine the age of death, determine exact diagnosis Information on unaffected relatives: Identify exact relationship to informant, determine the age of the diagnosis, determine the cause of death, determine the age of death</td>
<td>Tools compared: (1) Population based cancer registry (2) personal interviews # of participants recruited in each group: Group 1: n=359 Group 2: n=359 # of participants in analysis: Group 1: n=359 Group 2: n=359 # of first degree relatives: Group 1: NR Group 2: NR # of second degree relatives: Group 1: NR Group 2: NR</td>
<td>Metric used to evaluate the adequacy of the tool: Sensitivity (#, %): 92% mothers and 88% for sister informants, Specificity (#, %): 99% Other outcomes measured: familial breast cancer phenotypes</td>
</tr>
<tr>
<td>Breuer⁴ 1993 USA</td>
<td>Study purpose: To validate reports on bilaterality</td>
<td>Patients: Patients who attended the Strang High Risk (for Breast Cancer) program Practitioners: NR Setting where</td>
<td>Purpose: research; proactive Method used to collect FH: Self-completed survey Format: Did not report the format of</td>
<td>Age of participants: Patients or informants: mean age 45 years Details on Relatives: Side of family identified:</td>
<td>Tools compared: Group 1 patients report Group 2 hospital records</td>
<td>Metric used to evaluate the adequacy of the tool: Wilcoxon’s rank sums test and fisher’s exact test Other outcomes measured: NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Study population, setting, design</td>
<td>Purpose, data collection strategy and tool format</td>
<td>Tool structure: Participants + Details on Relatives</td>
<td>Tool structure: Details on Relatives †</td>
<td>Tool evaluation: Comparison*</td>
<td>Tool evaluation: other measures ^</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>developed: Specialist clinic</td>
<td>status in first-degree relatives of women with a strong family history of breast cancer.</td>
<td>data collection. After collection data were presented in a flow chart</td>
<td>Mother’s side relatives: mothers and sisters</td>
<td>informant and determine the age of diagnosis; determine the cause of death; determine exact diagnosis; determine the site of cancer</td>
<td>Group 1: n=112 Group 2: n=112</td>
<td># of participants in analysis: group 1: n=94, group 2: n=94</td>
</tr>
<tr>
<td>Applicability: FHxT not available for review</td>
<td>Setting where used: Patient’s home/Community setting</td>
<td>Medium: Paper</td>
<td>Participant PMH: NR</td>
<td># of first degree relatives: group 1: NR, group 2: NR</td>
<td># of second degree relatives: group 1: NR, group 2: NR</td>
<td></td>
</tr>
<tr>
<td>Cancer type: Breast</td>
<td>Study design: Non-comparative study (case series)</td>
<td>Integrated with e-record: No</td>
<td>Relatives identified: First and second degree relatives</td>
<td>Information on unaffected relatives: NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Study population, setting, design</td>
<td>Purpose, data collection strategy and tool format</td>
<td>Tool structure: Participants +</td>
<td>Tool structure: Details on Relatives †</td>
<td>Tool evaluation: Comparison*</td>
<td>Tool evaluation: other measures ^</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>
| Bruner42 1999 USA | Study purpose: Describe a model that assesses the risk factors of prostate cancer
Patients: First degree relatives of a cancer patient.
Practitioners: health educator and genetic counselor for expanded FH.
Setting where developed: Specialist genetic clinic
Applicability: FHxT not available for review
Setting where used: Specialty clinic (Cancer Center)
Cancer type: Prostate
Study design: Cohort study (prospective)
Purpose: clinical use; proactive
Method used to collect FH: Face to face personal interview: with health educator and genetic counselor; self-completed survey: questionnaire, mail.
Format: It doesn’t report the format of data collection; data are presented in a pedigree format once collected
Medium: Paper
Integrated with e-record: Yes
Age of participants: Patients or informants age 44 to 56 years
Details on Relatives: Side of family identified: Mother’s side relatives Father’s side relatives
Participant PMH NR
Relatives identified 1DR
Relatives’ Cancers and other conditions: Prostate cancer
Information on affected relatives: determine the age of diagnosis; determine the cause of death; determine the age of death; determine exact diagnosis; determine the site of cancer
Information on unaffected relatives: NR
Tools compared: # of participants recruited in each group: Cancer registry
of participants in analysis: 101 men
of first degree relatives: NR
of second degree relatives: NR
Metric used to evaluate the adequacy of the tool: NR
Other outcomes measured: PSA levels of men tested. Risk of cancer in men screened |
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives†</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalmers43 2001 UK</td>
<td>Patients: Patients from a Primary Care Provider Setting; First degree relatives of a cancer patient. Practitioners: NR. Setting where developed: Research: pilot test. Applicability: FHxT not available for review Setting where used: Patient's home/Community setting Cancer type: Breast Study design: Non-comparative study (case series)</td>
<td>Purpose: research; proactive Method used to collect FH: Telephone interview; Self-completed survey (mail) Format: NR Medium: paper and electronic Integrated with e-record: No</td>
<td>Age of participants: Patients or informants: 24 - 54 years; Relatives: 50 or older, Details on Relatives: Side of family identified: Mother's side relatives Father's side relatives Participant PMH NR Relatives identified 1DR, 2DR Strategy for FH enquiry: NR</td>
<td>Relatives' Cancers and other conditions: Breast cancer; Ovarian, endometrial, colorectal cancers or sarcoma. Information on affected relatives: identify exact relationship to informant; determine the age of diagnosis; determine exact diagnosis; determine the site of cancer. Information on unaffected relatives: NR</td>
<td>Tools compared: 1: The Information and Support Needs Questionnaire. # of participants recruited in each group: Group 1: 42. # of participants in analysis: group 1: 39. # of first degree relatives: group 1: NR. # of second degree relatives: group 1: NR.</td>
<td>Other outcomes measured: NR</td>
</tr>
</tbody>
</table>
Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Jong** 2006 Netherlands</td>
<td>Study purpose: To assess the prevalence of a positive family history of colorectal cancer within a random cohort among the Dutch population Patients: General population Patients from a Primary Care Provider Setting Practitioners: Family physician: subjects were invited to participate in the study on behalf of their general practitioner Setting where developed: Primary care Applicability: FHxT not available for review Setting where used: General population Cancer type: None Study design: Prospective cohort</td>
<td>Purpose: Research, Proactive Method used to collect FH: Mailed survey, anonymous questionnaire Format: Table Medium: Paper Integrated with e-record: No</td>
<td>Age of participants: Patients or informants 45-70 years relatives: < 50 and any age Details on Relatives: Side of family identified: Mother’s side relatives Father’s side relatives Participant PMH: NR Relatives identified: 1DR Strategy for FH enquiry: Family history questionnaire</td>
<td>Relatives’ Cancers and other conditions: Colorectal Information on affected relatives: To identify exact relationship to informant determine the age of diagnosis determine the site of cancer Information on unaffected relatives: Number of brothers and sisters</td>
<td>Tools compared: One Family history questionnaire # of participants recruited in each group: 5072 eligible for the study # of participants in analysis: 3973 questionnaires were returned # of first degree relatives: N/A # of second degree relatives: N/A</td>
<td>Metric used to evaluate the adequacy of the tool: Survey data collected anonymously, data not verified Other outcomes measured: NR</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Study population, setting, design</td>
<td>Purpose, data collection strategy and tool format</td>
<td>Tool structure: Participants + Details on Relatives</td>
<td>Tool structure: Details on Relatives †</td>
<td>Tool evaluation: Comparison*</td>
<td>Tool evaluation: other measures ^</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Eerola 2000</td>
<td>Patients: Cancer patients</td>
<td>Purpose: Clinical use; proactive</td>
<td>Age of participants: Patients or informants less that 40 years; Relatives 20 to 70 years</td>
<td>Relatives’ Cancers and other conditions: Breast and ovarian cancer</td>
<td>Tools compared: 1: Young patients< 40, 2: Bilateral patients, 3: Unselected patients were administered a family history questionnaire (NR)</td>
<td>Metric used to evaluate the adequacy of the tool: Validation method: (1) Disease - Hospital records - Cancer registry Sensitivity (%): 87% (2) Genealogy -Church parish registers - Population register centre Other outcomes measured: 1: Family history of ovarian cancer (ovarian cancer) among breast cancer families, 2: Incorrectly reported or unconfirmed cases, 3: Potential female candidates for genetic counselling, diagnostic testing</td>
</tr>
<tr>
<td>Finland</td>
<td>Practitioners: NR.</td>
<td>Method used to collect FH: Self-completed survey: Series 1&2 mailed</td>
<td>Details on Relatives: Not specified</td>
<td>Information on affected relatives: identify exact relationship to informant; determine the age of diagnosis; determine the cause of death; determine exact diagnosis</td>
<td># of participants recruited in each group: 1570 (170+118+1282)</td>
<td></td>
</tr>
<tr>
<td>Study purpose: 1) To evaluate the validity of the family history of breast cancer reported by patients 2) To evaluate the number of families and individuals at risk and potentially benefiting from surveillance.</td>
<td>Setting developed: Oncology specialist clinic</td>
<td>Format: Table</td>
<td>Participant PMH NR</td>
<td>Information on unaffected relatives: NR</td>
<td># of participants in analysis: group 1: 170, group 2: 118, group 3: 100 families identified (272 relatives diagnosed Breast/Ovarian.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting used: Patient’s home/Community setting</td>
<td>Medium: paper</td>
<td>Relatives identified First degree relatives 3rd degree relatives and beyond; grand aunts and uncles</td>
<td></td>
<td># of first degree relatives: group 1: NR, group 2: NR, group 3: NR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer type: Breast</td>
<td>Integrated with e-record: No</td>
<td></td>
<td></td>
<td># of second degree relatives: group 1: NR, group 2: NR, group 3: NR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study design: Non-comparative study (case series)</td>
<td>Age of Participants: 35 to 55 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fletcher, 2006</td>
<td>Patients: Patients from a primary care provider</td>
<td>Purpose: Research, Proactively</td>
<td>Details on Relatives: Side of family identified: Mother’s side relatives Father’s side relative</td>
<td>Information on affected relatives: To identify exact relationship to informant, determine</td>
<td>Tools compared: Survey vs medical record</td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>Practitioners: General internist and gastroenterologists</td>
<td>Method used to collect FH: Paper based-survey, medical records</td>
<td></td>
<td></td>
<td># of participants recruited in each group: n=1870 patients who returned the survey</td>
<td></td>
</tr>
<tr>
<td>Study purpose: To compare screening practices and beliefs in</td>
<td>Setting where developed:</td>
<td>Format:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patients: Cancer patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practitioners: NR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting where developed: Oncology specialist clinic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting used: Patient’s home/Community setting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer type: Breast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study design: Non-comparative study (case series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Patients: Cancer patients</td>
<td>Purpose: Clinical use; proactive</td>
<td>Age of participants: Patients or informants less that 40 years; Relatives 20 to 70 years</td>
<td>Relatives’ Cancers and other conditions: Breast and ovarian cancer</td>
<td>Tools compared: 1: Young patients< 40, 2: Bilateral patients, 3: Unselected patients were administered a family history questionnaire (NR)</td>
<td>Metric used to evaluate the adequacy of the tool: Validation method: (1) Disease - Hospital records - Cancer registry Sensitivity (%): 87% (2) Genealogy -Church parish registers - Population register centre Other outcomes measured: 1: Family history of ovarian cancer (ovarian cancer) among breast cancer families, 2: Incorrectly reported or unconfirmed cases, 3: Potential female candidates for genetic counselling, diagnostic testing</td>
</tr>
<tr>
<td></td>
<td>Practitioners: NR.</td>
<td>Method used to collect FH: Self-completed survey: Series 1&2 mailed</td>
<td>Details on Relatives: Not specified</td>
<td>Information on affected relatives: identify exact relationship to informant; determine the age of diagnosis; determine the cause of death; determine exact diagnosis</td>
<td># of participants recruited in each group: 1570 (170+118+1282)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting developed: Oncology specialist clinic</td>
<td>Format: Table</td>
<td>Participant PMH NR</td>
<td>Information on unaffected relatives: NR</td>
<td># of participants in analysis: group 1: 170, group 2: 118, group 3: 100 families identified (272 relatives diagnosed Breast/Ovarian.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting used: Patient’s home/Community setting</td>
<td>Medium: paper</td>
<td>Relatives identified First degree relatives 3rd degree relatives and beyond; grand aunts and uncles</td>
<td></td>
<td># of first degree relatives: group 1: NR, group 2: NR, group 3: NR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer type: Breast</td>
<td>Integrated with e-record: No</td>
<td></td>
<td></td>
<td># of second degree relatives: group 1: NR, group 2: NR, group 3: NR.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study design: Non-comparative study (case series)</td>
<td>Age of Participants: 35 to 55 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green, 200746 Canada</td>
<td>Patients: Cancer patients Practitioners: Ontario and Newfoundland Cancer Registries Setting where developed: In settings other than primary care, but it is applicable to primary care</td>
<td>Purpose: Research, proactively Method used to collect FH: Mail-in family history questionnaire Format: Pedigree Medium: Paper Integrated with e-record: Yes</td>
<td>Participant PMH: NR Relatives identified: All blood relatives who had been diagnosed with colorectal cancer Strategy for FH enquiry: Survey (self-reported FH) and medical chart review</td>
<td>the age of diagnosis, determine the site of cancer Information on unaffected relatives: N/A</td>
<td># of participants in analysis: n=1854 patients who reported adequate FH # of first degree relatives: 1DR with onset age ≤60 years or 2 or more 1st degree relatives at any age= 53 (2.9%); 1st degree relative with onset at ≥60 years or 2 or more 2nd degree relatives=162 (8.7%) # of second degree relatives: other family history of colorectal cancer= 140 (7.6%)</td>
<td>-Family history prevalence: 355 (19.1%) respondents reported family history of colorectal cancer -Beliefs -Identification of risk: 407 (39.1%, 95% CI 36.1%, 42%) out of 1041 respondents < 50 respondents that their clinician had asked for FH colorectal cancer; 72.2% (95% CI 70.0, 76.4) of respondents 50 years or older said they had been asked about FH. -Appropriate screening -Screening test preference</td>
</tr>
<tr>
<td>patients with and without clinically important family history</td>
<td>Primary Care and in settings other than Primary Care Applicability: FHxT not available for review Setting where used: Specialist genetic clinic Cancer type: Colorectal Study design: Prospective cohort</td>
<td>Purpose: To evaluate the contribution of genetic and environmental factors to the incidence of colorectal cancer</td>
<td>Table Medium: Paper Integrated with e-record: Yes</td>
<td>Participant PMH: NR Relatives identified: All blood relatives who had been diagnosed with colorectal cancer</td>
<td>Information on unaffected relatives: N/A</td>
<td>-Family history prevalence: 355 (19.1%) respondents reported family history of colorectal cancer -Beliefs -Identification of risk: 407 (39.1%, 95% CI 36.1%, 42%) out of 1041 respondents < 50 respondents that their clinician had asked for FH colorectal cancer; 72.2% (95% CI 70.0, 76.4) of respondents 50 years or older said they had been asked about FH. -Appropriate screening -Screening test preference</td>
</tr>
</tbody>
</table>
Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applicability: FHxT not available for review</td>
<td>record: No</td>
<td>Relatives identified: FDR, SDR</td>
<td>unaffected relatives: N/A</td>
<td>n=702</td>
<td>higher than in Ontario (p<0.0001)</td>
</tr>
<tr>
<td></td>
<td>Setting where used: Patients’ home/Community setting</td>
<td>Strategy for FH enquiry: Mail-in family history questionnaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cancer type: Colorectal</td>
<td># of first degree relatives: In Newfoundland 31% (n=220) and in Ontario 20.4% (n=764) of cases had at least 1 first degree relative affected with CRC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Study design & relevance Prospective cohort</td>
<td># of second degree relatives: N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Newfoundland 31% (n=220) and in Ontario 20.4% (n=764) of cases had at least 1 first degree relative affected with CRC.
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
</table>
| Hlavaty 47, 2005 Slovakia | **Study purpose:** To evaluate the interest of first degree relatives of colorectal cancer patients to participate in colonoscopy screening and to compare the findings to controls with a negative family history | **Purpose:** research use
Method used to collect FH: Face to face personal interview, Self-completed mailed survey
Format: NR.
Applicability: Reviewed FHxT; not applicable to primary care
Medium: Paper
Setting where developed: Research
Setting where used: Hospital Internal Medicine
Cancer type: Colorectal
Study design: Cohort study (prospective) | Age of participants: Patients or informants: Mean age at diagnosis 65.9 +/-12.1; Relatives: over 40 years or 10 years younger than the youngest case of CRC in the family
Details on Relatives: Side of family identified: Mother's side relatives Father's side relatives
Participant PMH: NR
Relatives identified: First degree relatives
Relatives’ Cancers and other conditions: Hereditary non-polyposis colorectal cancer, stomach, uterus, lungs, pancreas, pharynx, breast, lymphoma, hepatocellular, prostate.
Information on affected relatives: determine the age of diagnosis; determine the site of cancer
Information on unaffected relatives: NR | Tools compared: 1: Family history of Colorectal cancer questionnaire
of participants recruited in each group: Group 1: 34 patients
of participants in analysis: group 1: 34 patients
of first degree relatives: group 1: 237
of second degree relatives: NR | Metric used to evaluate the adequacy of the tool: NR
Other outcomes measured: 1: Presence of at least 1 first degree relative with CRC in the family history was noted in 12 patients (35.5%), 2: Mean of first degree relatives with positive family history: 6.3 + - 3.4, 3: Mean of first degree relatives with negative family history: |
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants †</th>
<th>Tool structure: Details on Relatives ‡</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katballe et al. 2001</td>
<td>Patients: Specialist secondary care/tertiary care population: Cancer patients Practitioners: General Internist: surgeon Setting where developed: Surgeons interviewed the patients Applicability: FHxT not available for review Setting where used: Surgical clinic Cancer type: Colorectal Study design: Non-comparative study (case series)</td>
<td>Purpose: Clinical use; reactive Method used to collect FH: Interviewed by surgeon using structured FHQ (not clear if face to face or phone) Format: Pedigree Medium: Paper Integrated with e-record: No</td>
<td>Age of participants: NR Details on Relatives: Side of family identified: Mother's side relatives Father's side relatives Participant PMH: info on CRC Relatives identified: First degree relatives second degree relatives (2DR consider if patients were diagnosed before the age of 50 or if colorectal cancer was reported among first-degree relatives) Strategy for FH enquiry: not clear (specific DQ) Relatives’ Cancers and other conditions: Any cancers Information on affected relatives: determine the age of diagnosis; determine the site of cancer determine the cause of death; determine the age of death; Information on unaffected relatives: NR Relatives identified: First degree relatives second degree relatives (2DR consider if patients were diagnosed before the age of 50 or if colorectal cancer was reported among first-degree relatives) Strategy for FH enquiry: not clear (specific DQ)</td>
<td>Tools compared: questionnaire used by patient's surgeon compared to relatives medical records +/- autopsy report +/- cancer registry +/- death certificates # of participants recruited in each group: Group 1: n=1328 eligible patients. # of participants in analysis: Group 1: n=1200 completed the questionnaire, reported that their families belonged to Amsterdam II categories 1, 2 or 3 and these families were subjects of this study # of first degree relatives: Group 1 a total of 167 informants reported colorectal cancer among 196 first-degree relatives # of second degree relatives: Group 1: second degree relatives were considered if the patients were</td>
<td>Metric used to evaluate the adequacy of the tool: Correct cancer reported in relatives: 1DR correct 68.4% 1DR increase to 81.7% Other (specify): true-positive rate Other outcomes measured: Correct allocation into risk categories= meet Amsterdam I & II False + 21% (3/14) False - 32% (7/18)</td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerber10 1997 USA</td>
<td>Study purpose: To evaluate the sensitivity of patients’ reports of familial cancer and to measure agreement between patients’ reports and records in the Diet, Activity and Reproduction in Colon Cancer (DARCC) study Study purpose: To evaluate the sensitivity of patients’ reports of familial cancer and to measure agreement between patients’ reports and records in the Diet, Activity and Reproduction in Colon Cancer (DARCC) study</td>
<td>Patients: General population, patients from primary care Practitioners: NR Setting where developed: Research setting 1) Kaiser Permanente Medical Care Program Northern California; 2) the Twin Cities metropolitan area; and 3) an eight-county metropolitan area Salt Lake City, Utah, Applicability: Reviewed FHxT; not applicable to primary care Setting where used:</td>
<td>Purpose: research; proactive Method used to collect FH: Face to face (structured) personal interview Format: NR Medium: On electronic medium Integrated with e-record: No</td>
<td>Age of participants: Patients 30 to 79 years Details on Relatives: Side of family identified: NR Participant PMH NR Relatives identified 1DR relatives</td>
<td>Relatives’ Cancers and other conditions: Any cancers: colorectal, ovarian, uterine, breast and prostate. Information on affected relatives: identify exact relationship to informant; determine the age of diagnosis; determine the cause of death; determine the age of death; determine exact diagnosis Information on unaffected relatives: NR</td>
<td>Tools compared: 1: Computer-assisted in-person interviewing, 2: Utah Population Database # of participants recruited in each group: Group 1: 881, group 2: 331 # of participants in analysis: group 1: 881, group 2: 331 # of first degree relatives: group 1: 881, group 2: 331 # of second degree relatives: group 1: NR, group 2: NR</td>
</tr>
</tbody>
</table>

 NR: Not reported
Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Kaiser Permanente Medical Care Program Northern California; 2) the Twin Cities metropolitan area; and 3) an eight-county metropolitan area surrounding Salt Lake City, Utah, Cancer type: Breast, ovarian, colorectal, prostate Study design: Cohort study (prospective)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

C-30
Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants + Details on Relatives</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>King, 2002 USA</td>
<td>Patients: Men with prostate cancer Practitioners: trained interviewer Setting where developed: Prostate Clinic Applicability: FHxT not available for review</td>
<td>Purpose: research use; reactive Method used to collect FH: personal structured interview: (Not clear if face to face or telephone interview) Format: NR Medium: NR Integrated with e-record: No</td>
<td>Age of participants: NR Details on Relatives: Side of family identified: Mother's side relatives Father's side relatives Participant PMH NR Relatives identified First degree relatives (1DR) Strategy for FH enquiry: ask about all 1DR. If cancer identified in relatives, specific probes about detail</td>
<td>Tools compared: Interview, compared to medical record, pathology report, death certificate # of participants recruited in each group: Group 1: 442, group 2: 442 # of participants in analysis: group 1: 143, group 2: 249 # of first degree relatives: group 1: 263, group 2: 263 # of second degree relatives: group 1: NR, group 2: NR</td>
<td>Metric used to evaluate the adequacy of the tool: % agreement between self-report & actual relatives medical history Vary by site: Bladder/kidney (100% x/y) Prostate (80% x/y) Ovarian (50% x/y) 1DR accuracy 62-73% except brother 84% Other outcomes measured: NR</td>
</tr>
</tbody>
</table>

<p>| Parent, 1997 Canada | Patients: CONTROLS: Non-specialist secondary care/territory care population General population: women who had no history of breast cancer CASES: Specialist secondary | Purpose: research; proactive Method used to collect FH: Face to face personal structured FH interview Format: NR | Age of participants: Patients: General population no older than 79 years; Mean age of women reporting positive family history of breast cancer was 59, ages ranged from 30-79. | Relatives' Cancers and other conditions: Breast cancer Information on affected relatives: determine the age of diagnosis; determine the site of cancer, Tools compared: Home FH interview compared to medical record (+/- path diagnosis) of 1DR +/- contact relatives | Number of participants recruited in each Metric used to evaluate the adequacy of the tool: NR Other outcomes measured: Accuracy data; 1: 68 cases and 37 controls reported a history of breast |</p>
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives</th>
<th>Tool evaluation: other measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>affected and unaffected women’s reports of breast cancer in first-degree relatives</td>
<td>care/tertiary care population Cancer patients: women diagnosed with cancer Practitioners: NR</td>
<td>Study purpose: Test the hypothesis that women not pre-selected for familial risk report family history of breast cancer in fewer patients: Unselected primary care, community-based population patient’s attending women’s health clinic Practitioners: None (self-administered by patient) Setting where developed: Primary care women’s health</td>
<td>Tool structure:</td>
<td>Tool structure: Details on Relatives: Side of family identified: Not specified Participants PMH NR Relatives identified First degree relatives Other: they were asked if they has relatives affected in general Strategy for FH enquiry: Not clear</td>
<td>Tool evaluation: Comparison: 1.71 times greater than the odds of</td>
</tr>
<tr>
<td>Quillin48 2006 USA</td>
<td>Patients: Unselected primary care, community-based population patient’s attending women’s health clinic Practitioners: None (self-administered by patient) Setting where developed: Primary care women’s health</td>
<td>Purpose: research; proactive Method used to collect FH: Self-completed survey: Questionnaire was completed in the clinic Format: Tabular Medium: paper</td>
<td>Age of participants: 40 years or older; largest proportion: 55.8% age 40-49. Relatives’ age NR</td>
<td>Relatives’ Cancers and other conditions: One syndrome cancer: focus of study on Breast Cancer, Any cancers identified Information on affected relatives: identify exact relationship to informant: determine</td>
<td>Tools compared: 1: Self administered paper questionnaire. # of participants recruited in each group: 899 # of participants in analysis: as above # of first degree relatives: NR # of second degree relatives: # of unaffected relatives: NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cancer in at least one first degree relative. 67 (91%) cases accurate 32 (97%) controls</td>
</tr>
</tbody>
</table>

Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>paternal than maternal relatives</td>
<td>clinic</td>
<td>Integrated with e-record: No</td>
<td>Participants PMH: Reported with details on ethnicity, breast cancer, previous genetic counseling</td>
<td>relatives: NR</td>
<td>reporting paternal family history (p<0.01, 95% CI 1.26 – 2.34). FH not validated</td>
<td></td>
</tr>
<tr>
<td>Setting where used:</td>
<td>Primary care women's health clinic</td>
<td>Relatives identified Any relative (excluded mothers with Breast cancer)</td>
<td>the age of diagnosis: determine the cause of death: if died from cancer, determine exact diagnosis</td>
<td># of relatives; 202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer type:</td>
<td>Breast</td>
<td>Strategy for FH enquiry: DQ: list relatives with any form of cancer, with prompts for side of family, "kind of cancer", age of diagnosis, and if died from cancer</td>
<td>Information on unaffected relatives: not collected</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design:</td>
<td>Non-comparative study (case series)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives</th>
<th>Tool structure: Relatives’ Cancers and other conditions:</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
<th>Metric used to evaluate the adequacy of the tool:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sijmons*17 2000 Netherland</td>
<td>Study purpose: Examine the accuracy of the family history of cancer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Patients:** Specialist secondary care/tertiary care population
 Patient referred to Genetic clinic with FH cancer
 Practitioners: (self-administered by patient) Geneticist
 Setting where developed: Specialist genetic clinic
 Applicability: Reviewed FHxT; not applicable to primary care
 Setting where used: Genetic counseling clinic
 Cancer type: Breast, ovarian and colorectal
 Study design: Non-comparative study (case series) | **Purpose:** Clinical use - reactive and proactive
 Format: Pedigree
 Medium: Paper
 Integrated with e-record: No | **Age of participants:** Patients age NR
 Relatives age NR
 Details on Relatives:
 Side of family identified:
 Mother’s side relatives
 Father’s side relatives
 Participant PMH NR
 Relatives identified:
 First and second degree relatives
 Most third degree relatives | **Relatives’ Cancers and other conditions:** Any cancers (exclude metastasis)
 Information on affected relatives:
 DOB; date of death; determine the age of diagnosis; determine the cause of death; determine exact diagnosis; determine the site of cancer
 Information on unaffected relatives: DOB; date of death | **Tools compared:** FHQ compared to medical record. (+/-path reports)
 # of participants recruited in each group: 129
 # of participants in analysis: 120
 # of first degree relatives: group 1: NR, group 2: NR
 # of second degree relatives: NR | **Accuracy of Cancer risk assessment:** 83 (47%) had Gail-calculated breast cancer risk high enough to warrant **Other outcomes measured:** NR |
| Skinner, 200549 USA | **Study Purpose:** To evaluate the impact of the computerized |
| **Type of article** Journal article reporting a primary study
 Study design: Non-randomized Trial | **Purpose:** Clinical use, proactively
 Method used to collect FH: Pedigree | **Age of Participants:** Patients or informants. Relatives | **Relatives’ Cancers and other conditions:** Breast, colorectal
 Information on affected relatives: To identify exact | **Tools compared:** CRIS (Cancer Risk Intake System)
 # of participants recruited in each group: 227 | **Metric used to evaluate accuracy:** **Cancer risk assessment:** 83 (47%) had Gail-calculated breast cancer risk high enough to warrant |
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>cancer risk intake system (CRIS)</td>
<td>Participants: Patients from a primary care provider, family physician and general internist</td>
<td>Format: Questionnaire. It displays messages for patients to discuss with clinicians</td>
<td>Mother’s side relatives Father’s side relative</td>
<td>Relationship to informant, determine the age of diagnosis, determine the site of cancer</td>
<td># of participants in analysis: 215</td>
<td>receipt of tailored messages on tamoxifen</td>
</tr>
<tr>
<td>Provider: General internist</td>
<td>Relatives identified: FDR, SDR</td>
<td>Strategy for FH enquiry: Computer-based questionnaire about FH</td>
<td>Information on unaffected relatives: N/A</td>
<td></td>
<td># of first degree relatives: N/A</td>
<td>Cancer risk assessment: 71 (33%) had breast, ovarian or colon cancer risk high enough to warrant receipt of tailored messages on genetic counseling</td>
</tr>
<tr>
<td>Tool development: Primary care</td>
<td>Medium: Computerized</td>
<td></td>
<td></td>
<td></td>
<td># of second degree relatives: N/A</td>
<td>Cancer risk assessment: 31 (14%) had colon cancer risk high enough to warrant surveillance via colonoscopy and were currently non-adherent</td>
</tr>
<tr>
<td>Setting: Cancer type: Breast, colorectal</td>
<td>Integrated with e-record: No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design & relevance</td>
<td>Prospective cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)"
Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theis 1994, Canada</td>
<td>Patients: Selected Secondary/tertiary care population: Cancer patients Practitioners: Tool 1 self-administered by patient Tool 2 by interviewers in clinic setting Setting where developed: Secondary care clinic Applicability: FHxT not available for review Setting where used: Secondary care clinic Cancer type: Breast/ovarian, prostate, colorectal Study design: Non-comparative study (case series)</td>
<td>Purpose: research: Reactive. Method used to collect FH: Tool 1: Self-completed FHQ FH (mail) Tool 2: follow-up Face to face personal GI Format: Tool 1: Tabular Medium: Tool 1: Paper medium: Questionnaire Integrated with e-record: No</td>
<td>Age of participants: Patients: 31 to 70 years. Details on Relatives: Side of family identified: Not specified Participant PMH NR Relatives identified First and second degree relatives. Strategy for FH enquiry Not clear</td>
<td>Relatives’ Cancers and other conditions: Any cancers. Information on affected relatives: identify exact relationship to informant; determine the cause of death; determine the date of death; determine the age of diagnosis; determine exact diagnosis; determine the site of cancer; details of any breast surgery Information on unaffected relatives: identify exact relationship to informant; determine the cause of death; determine the date of death.</td>
<td>Tools compared: tool 1: questionnaire (FHQ), tool 2: follow-up Interview (GI); compared to contact relatives +/- medic records +/- ca register +/- death certificates # of participants recruited in each group: 203. # of participants in analysis: 165. # of first degree relatives: 1,200 for both groups. # of second degree relatives: 3,456 for both groups.</td>
<td>Metric used to evaluate the adequacy of the tool: Compare accuracy FHQ & GI (1) Quantitative First degree relatives (presence of cancer; site & age diagnosis) GI slightly better FHQ Second degree relatives GI better (age of diagnosis [11%]> presence of cancer [7%] > site diagnosis [5%]) Other outcomes measured: Accuracy of FH: age of diagnosis 1DR>2DR</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Study population, setting, design</td>
<td>Purpose, data collection strategy and tool format</td>
<td>Tool structure: Participants +</td>
<td>Tool structure: Details on Relatives †</td>
<td>Tool evaluation: Comparison*</td>
<td>Tool evaluation: other measures ^</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Tischkowitz(^{50}) 2000 UK</td>
<td>Study purpose: To compare three methods used to estimate the risk for breast cancer in a group of high risk women</td>
<td>Patients: cancer genetic clinic Practitioners: Geneticist Setting where developed: Specialist genetic clinic Applicability: FHxT not available for review Setting where used: Genetic counselling clinic Cancer type: Breast Study design: Non-comparative study (case series/reliability)</td>
<td>Purpose: clinical use; reactive Method used to collect FH: NR Format: Pedigree Medium: NR Integrated with e-record: Yes</td>
<td>Age of participants: Patients: NR; relatives: younger than 50 years Details on Relatives: Side of family identified: Mother's side relatives Father's side relatives Participant PMH: NR Relatives identified: First, second, third degree relatives and beyond</td>
<td>Relatives’ Cancers and other conditions: Breast and ovarian cancer. Information on affected relatives: determine the age of diagnosis. Information on unaffected relatives: Age of all unaffected female relatives was recorded.</td>
<td>Tools compared: 1: one tool - NR asking detailed family history extending to at least 3 generations # of participants recruited in each group: Group 1: 200 women participating in the TRACE study. # of participants in analysis: group 1: 200. # of first degree relatives: NR # of second degree relatives: NR</td>
</tr>
<tr>
<td>Weinrich(^{19}) 2002 USA</td>
<td>Study purpose: To report on the stability of self-reported family history of prostate cancer over one-year</td>
<td>Patients: Selected primary care/community-based population men from a cancer registry (African American Hereditary Prostate Cancer study) Practitioners: NR: first interview</td>
<td>Purpose: research; reactive Method used to collect FH: DQ on Face to face personal interview: in-person interview first time, Identical Telephone interview: second interview one year later</td>
<td>Age of participants: Patients or informants: mean age 50.4 SD=7.6 Details on Relatives: Side of family identified: Mother's side relatives Father's side relatives</td>
<td>Relatives’ Cancers and other conditions: prostate cancer. Information on affected relatives: determine exact diagnosis; determine the site of cancer</td>
<td>Tools compared: 1: question at time 1, 2: question at time 2. # of participants recruited in each group: 96 # of participants in analysis: 96 # of first degree relatives: group 1:</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Study population, setting, design</td>
<td>Purpose, data collection strategy and tool format</td>
<td>Tool structure: Participants + relatives</td>
<td>Tool structure: Details on Relatives identified</td>
<td>Tool evaluation: Information on unaffected relatives: NR</td>
<td>Tool evaluation: Comparison*</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Ziogas 2003</td>
<td>Nursing student second interview</td>
<td></td>
<td>Format: Not clear</td>
<td></td>
<td>Information on unaffected relatives: NR</td>
<td>NR, group 2: NR.</td>
</tr>
<tr>
<td>USA</td>
<td>Setting where developed: Research</td>
<td>Setting where used: Face to face interview at a community-based educational program on prostate cancer screening</td>
<td>Relatives identified If positive family history for Prostate Cancer; identify First degree (Brother; Father; son) Second degree positive (Grand Parents; Grand Parents siblings)</td>
<td></td>
<td></td>
<td># of second degree relatives: group 1: NR, group 2: NR</td>
</tr>
<tr>
<td>Study purpose:</td>
<td>Cancer type: Prostate</td>
<td>Cancer type: Prostate</td>
<td>Information on relatives: Identify exact relationship to informant determine the age of diagnosis, determine the cause of and age of death</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) to evaluate the consistency of patient-reported information on cancer in their first-, second- and third-degree relatives</td>
<td>Study design: Non-comparative study / reliability</td>
<td>Study design: Non-comparative study / reliability</td>
<td>relatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) To determine</td>
<td>Patients: Selected primary care/community-based population Cancer patients Practitioners: Interviewers (not specified)</td>
<td>Patients: Selected primary care/community-based population Cancer patients Practitioners: Interviewers (not specified)</td>
<td>Participants PMH NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method used to collect FH: Telephone interview</td>
<td>Method used to collect FH: Telephone interview</td>
<td>Medium: NR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Format: Pedigree</td>
<td>Format: Pedigree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medium: electronic Medium: Interviewers entered data into Genetics Registry In System (GRIS)</td>
<td>Medium: electronic Medium: Interviewers entered data into Genetics Registry In System (GRIS)</td>
<td>Integrated with e-record: No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Age of participants: Informants Age is not specified although informants are present subdivided in 5 age groups from <40 years to 70+</td>
<td>Age of participants: Informants Age is not specified although informants are present subdivided in 5 age groups from <40 years to 70+</td>
<td>Details on Relatives: Side of family identified: Father’s side relatives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relative’s Cancers and other conditions: One syndrome cancer: focus on breast, ovarian, colon, any cancers</td>
<td>Relative’s Cancers and other conditions: One syndrome cancer: focus on breast, ovarian, colon, any cancers</td>
<td>Information on affected relatives: Identify exact relationship to informant determine the age of diagnosis, determine the cause of and age of death</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tools compared: 1: Telephone interview, 2: Self report, pathology report, death certificate</td>
<td>Tools compared: 1: Telephone interview, 2: Self report, pathology report, death certificate</td>
<td># of participants recruited in each group: n=1111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># of participants in analysis: n=1111</td>
<td># of participants in analysis: n=1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># of first degree</td>
<td># of first degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Evidence Table 2b. Eligible studies using family history tools but with insufficient information or tools not applicable to primary care (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Study population, setting, design</th>
<th>Purpose, data collection strategy and tool format</th>
<th>Tool structure: Participants +</th>
<th>Tool structure: Details on Relatives †</th>
<th>Tool evaluation: Comparison*</th>
<th>Tool evaluation: other measures ^</th>
</tr>
</thead>
<tbody>
<tr>
<td>applicable to primary care</td>
<td>Integrated with e-record: Not clear</td>
<td>Participant PMH: NR</td>
<td>Information on unaffected relatives: identify exact relationship to informant, determine the age of the diagnosis</td>
<td>relatives: not clear</td>
<td># of relatives: 3222</td>
<td></td>
</tr>
<tr>
<td>Setting where used: Patient's home/Community setting</td>
<td>Relatives Age is not specified although informants are presented subdivided in 5 age groups from <50 years to 70+</td>
<td>Participant's relevant past medical history: NR</td>
<td>cancer</td>
<td># of second degree relatives: not clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer type: Breast/ovarian and colorectal</td>
<td>Relatives identified: 1DR, 2DR, 3DR</td>
<td>Strategy for FH enquiry: Not clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design: Non-comparative study (case series)</td>
<td>Information on unaffected relatives: identify exact relationship to informant, determine the age of the diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information on unaffected relatives: identify exact relationship to informant, determine the age of the diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of relatives: 3222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) to determine the effect of the characteristics of the patient's relatives on the probability of agreement between patient-reported information and reference standard.
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Tool, Purpose, Content and Format of tool, Underlying Guidelines/Models</th>
<th>Study Population, Cancer Type, Clinical Setting, Applicability</th>
<th>Study Design, Comparison Group(s) or Interventions, Sample Size</th>
<th>Key Results Relating to Clinical Utility</th>
</tr>
</thead>
</table>
| Benjamin22, 2003 UK | **Tool:** Familial Cancer Assessment Tool (FCAT)
Purpose: Stratify risk of familial breast cancer
Content: Directed family history questions based on guideline with suggested onward management
Format: Nurse-administered interview-based questionnaire, following patient completed advance family history questionnaire
Underlying guidelines: Eccles DM et al. J Med Genet 2000; 37: 203-9 | **Study population:** Patients referred to joint surgical/genetics family history breast screening clinic
Cancer type: Breast
Setting: Specialist genetic clinic
Applicability: Potentially applicable to, but not developed or evaluated in, primary care setting | **Design:** Tool development and description
Comparison groups: 1: Text of GP letter
2: Postal self-completion family history questionnaire alone
3: Genetic interview (gold standard)
Groups sample size for each group: n=152 | **Practice-related outcomes:**
Ease of completion rated by nurse interviewer on 1-10 scale (easy-difficult)
- 60/100 scales were rated 1-3
Other outcomes reported:
Sensitivity, specificity, positive predictive value, negative predictive value; gold standard = genetic interview |

Abbreviations: AMA=American Medical Association; Chi-square= χ^2; EsPeR=Personalized Estimate Risks; FCAT=Familial Cancer Assessment Tool; FHAT=Family History Assessment Tool; GP=General Practitioner; GRACE=Genetic Risk Assessment in the Clinical Environment; GRAIDS= Genetic Risk Assessment in an Intranet and Decision Support; ICC=Inter Class Correlation; NR=NR; PC=Primary Care; OR=Odds Ratio; RAGs=Risk Assessment in Genetics; SD=Standard deviation; USPSTF=United States Preventive Services Task Force;
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Tool, Purpose, Content and Format of tool, Underlying Guidelines/Models</th>
<th>Study Population, Cancer Type, Clinical Setting, Applicability</th>
<th>Study Design, Comparison Group(s) or Interventions, Sample Size</th>
<th>Key Results Relating to Clinical Utility</th>
</tr>
</thead>
</table>
| Braithwaite et al. 2005 UK | Tool: Genetic Risk Assessment in the Clinical Environment (GRACE)
Purpose: Cancer risk assessment and communication
Content: Pedigree-based family history data collection with personalized risk report
Format: Patient-completed, computer-based questionnaire
Cancer type: Breast
Setting: Unspecified 'clinical environment'
Applicability: Potentially applicable to, but not tested in, primary care setting | Design: Randomized controlled trial
Comparison group(s): Interview by clinical nurse specialist. Comparison and intervention arms returned self-completion postal family history questionnaire at baseline
Sample size: GRACE: n=38
Control: n=38
Power calculation: No | Practice-related outcomes: 1. Acceptability to patients (post-clinic)
(a) Attitude to interventions – six attributes, 5-point scale
 • 2/6 comparisons statistically significant, favored control arm
(b) Perceived benefits of interventions – seven attributes, 5-point Likert scale
 • 7/7 comparisons statistically significant, favored control arm
(c) Perceptions of risk information – five attributes, 5-point Likert scale
 • 5/5 comparisons statistically significant, favored control arm
(d) Satisfaction and risk communication preferences – single item, 4-point Likert scale
 • 1/1 comparisons statistically significant, favored control arm
2. Cognitive outcomes (all baseline, post-clinic, 3 months)
(a) Comparative risk perception – single item, 5-point scale
 • No significant difference between GRACE and control arms; statistically significant time x treatment interaction indicated reduction in elevated risk perceptions in control arm compared to GRACE arm
(b) Risk accuracy – binary concordance between participant and guideline/clinical nurse specialist
 • No significant improvements in accuracy of risk perception observed in GRACE and control arms. Baseline differences between arms |
Evidence Table 3: Study characteristics for studies evaluating risk assessment tools (RATS) (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Tool, Purpose, Content and Format of tool, Underlying Guidelines/Models</th>
<th>Study Population, Cancer Type, Clinical Setting, Applicability</th>
<th>Study Design, Comparison Group(s) or Interventions, Sample Size</th>
<th>Key Results Relating to Clinical Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Study population: Physicians in individual practice, teaching, health centers Cancer type: Breast, prostate, colorectal Setting: Ambulatory care Applicability: Some formative, but not definitive, evaluation in primary care</td>
<td></td>
<td></td>
<td>3. Affective outcomes (a) Hospital Anxiety and Depression Scale score (baseline, 3 months) • No significant difference between arms or between baseline and 3 months (b) Current anxiety - Spielberger’s State-Trait Anxiety Inventory (short form) (baseline, post-clinic, 3 months) • Statistically significant increase in scores baseline-3 months in both arms; statistically significant treatment effect, favored control (c) Cancer worry (baseline, 3 months) • statistically significant decrease in cancer worry in both arms; no statistically significant difference between arms Other outcomes reported: N/A</td>
</tr>
<tr>
<td>Colombet²⁴,²⁵ 2003 France</td>
<td>Tool: EsPeR System Purpose: Health professional decision-support Content: Family history collection, pedigree drawing, risk estimation based on published models, individualization of guidelines, printable summary of prevention messages for physicians and patients Format: Physician-completed, interactive web-based system. Underlying guidelines: Colombet I et al. Proc AMIA Symp 2002; 175-9; Gail model</td>
<td></td>
<td></td>
<td>Practice-related outcomes: N/A Other outcomes measured: N/A</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Tool, Purpose, Content and Format of tool, Underlying Guidelines/Models</td>
<td>Study Population, Cancer Type, Clinical Setting, Applicability</td>
<td>Study Design, Comparison Group(s) or Interventions, Sample Size</td>
<td>Key Results Relating to Clinical Utility</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Emery27 1999 | Tool: Genetic Risk Assessment in an Intranet and Decision Support (GRAIDS), for which Risk Assessment in Genetics (RAGS) was the prototype
Purpose: Management of familial cancer in primary care
Content: Family history collection; pedigree drawing; patient-specific risk report; clinical practice guidelines/management advice; patient-specific explanations for the management advice
Format: Web-based program designed to be used by a single lead physician in each practice. Preceded by an educational visit and a 2 hour training session; patients asked to complete family history questionnaire before attending practice
Cancer type: Breast, ovarian, colorectal
Setting: Family practice
Applicability: Family practice | Design: Cluster randomized controlled trial with adaptive sub-group in intervention arm
Comparison groups:
1. 45 minute educational session plus mailing of regional guidelines
2. Intervention as described, in fixed and adaptive sub-arms (adaptive received further input to promote greater software use)
Sample size:
1. Practices n=22
 Referred patients n=84
2. Practices n=23
 (12 fixed, 11 adaptive)
 Referred patients n=162
 Non-referred patients n=78
Power calculation:
20 practices per arm required to demonstrate 15% difference between arms (β=0.2, α=0.05) | Practice-related outcomes:
Practices
a) Appropriateness of referrals
 a) consistency of family history reported in referral letter with regional guidelines
 • Breast cancer – intervention 99/107, control 44/60, OR (95%CI) = 4.5 (1.6-13.1)
 • Bowel cancer – intervention 75/76, control 23/25, OR (95%CI) = 6.5 (0.5-83.7)
 • Combined – intervention 174/183, control – 67/85, OR(95%CI) = 5.2 (1.7-15.8), p=0.006
b) final expert risk assessment of referred patients
 • Breast cancer – intervention 60/78, control 23/33, OR (95%CI) = 1.4 (0.6-3.5)
 • Bowel cancer – intervention 30/54, control 17/20, OR (95%CI) = 0.2 (0.1-0.8)
 • Combined – intervention 90/132, control – 40/53, OR(95%CI) = 0.7 (0.3-1.5), p=0.35
2. Patients
a) Risk perception
 Mean scores (SD) – intervention (referred) 4.99 (1.14), intervention (not referred) 4.25 (0.80) control 5.04 (0.88), Intervention (referred) v control, mean difference (95% CI)= -0.09 (0.34-0.51), NS
 Intervention (not referred) v intervention (referred), mean difference (95%CI) = 0.74 (0.38-1.09), P<0.0001
b) Knowledge
 Breast cancer:
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Tool, Purpose, Content and Format of tool, Underlying Guidelines/Models</th>
<th>Study Population, Cancer Type, Clinical Setting, Applicability</th>
<th>Study Design, Comparison Group(s) or Interventions, Sample Size</th>
<th>Key Results Relating to Clinical Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher 2003 Australia</td>
<td>Tool: Triage tool embedded in family history questionnaire Purpose: Permit women to assess their own risk of familial breast cancer Content: Directed family history questions; risk triage (population or increased risk) and advice to see doctor if increased risk Format: Patient-completion paper-based questionnaire Underlying guidelines: Advice about familial aspects of breast cancer and ovarian cancer: a guide for health professionals. Kings Cross, New South Wales: National Breast Cancer Centre, 2000</td>
<td>Study population: Patients having repeat mammograms Cancer type: Breast Setting: Breast screening clinic Applicability: Potentially applicable to primary care</td>
<td>Design: Uncontrolled trial Comparison groups: None Sample size: Total n=559 Validation study n=89 Power calculation: NR</td>
<td>Practice-related outcomes: # participants making errors affecting risk categorization - 29/559 Other outcomes measured: Concordance between questionnaire-based category (I, II or III, population, moderate, potentially high risk, according to cited guideline) and risk based on genetic counsellor telephone interview</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Tool, Purpose, Content and Format of tool, Underlying Guidelines/Models</td>
<td>Study Population, Cancer Type, Clinical Setting, Applicability</td>
<td>Study Design, Comparison Group(s) or Interventions, Sample Size</td>
<td>Key Results Relating to Clinical Utility</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------------------------------------</td>
</tr>
</tbody>
</table>
| Gilpin 2000 Canada | Tool: Family History Assessment Tool (FHAT)
Purpose: Identify patients for referral
Content: Directed family history questions with points specified for each affected family member
Format: Clinician-oriented, paper-based
Underlying guidelines: Predictive scoring system, described in same paper | Study population: Familial breast cancer registry plus patients referred to genetics clinic
Cancer type: Breast, ovarian cancer
Setting: Specialist genetic clinic
Applicability: Designed to be applicable to, but not developed or evaluated in, primary care | Design: Tool development study
Comparison groups: N/A
Sample size: N/A
Power calculation: N/A | Practice-related outcomes:
N/A
Other outcomes measured:
Sensitivity, specificity, positive predictive value, negative predictive value; gold standard unclear |
| Gramling 2004 USA | Tool: 'Brief tool' for physicians
Purpose: Rapid assessment of family history
Content: Risk stratification criteria; lifetime probability benchmark ranges; screening recommendations; genetics services contact numbers
Format: Coat pocket laminated card for physicians, plus monograph on managing inherited breast cancer risk
Underlying guidelines: USPSTF screening recommendations; AMA Monograph, Managing inherited breast cancer risk | Study population: Internal medicine, family physicians
Cancer type: Breast
Setting: Internal medicine, family practice
Applicability: Developed for primary care settings | Design: Tool development study
Comparison groups: None
Sample size: n=7
Power calculation: NR | Practice-related outcomes:
1. Frequency of discussing inherited risk with patients with a family history of breast cancer (baseline, 3 months)
 • 5/7 reported decrease in frequency,
 • 2/7 reported no change
2. Subjective threshold for classifying a woman as ‘high risk’ (baseline, 3 months)
 • 6/7 reported increase in subjective threshold
Other outcomes measured:
N/A |
| Skinner 5 USA | Tool: Cancer Risk Intake System(CRIS)
Purpose:
Cancer type: | Study population: Clinic patients
Design: Uncontrolled before-after trial | Practice-related outcomes:
1. For those participants whose risk warranted a tailored tamoxifen |
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Tool, Purpose, Content and Format of tool, Underlying Guidelines/Models</th>
<th>Study Population, Cancer Type, Clinical Setting, Applicability</th>
<th>Study Design, Comparison Group(s) or Interventions, Sample Size</th>
<th>Key Results Relating to Clinical Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watson53 2001 Watson54 2002 UK</td>
<td>Risk assessment, recommendations for discussion with provider</td>
<td>Tool: Information pack</td>
<td>Study population: Family physicians</td>
<td>Design: Cluster randomized controlled trial</td>
</tr>
<tr>
<td></td>
<td>Content: Risk assessment algorithm Tailored printouts</td>
<td>Purpose: Risk assessment, clinical management</td>
<td>Cancer type: Breast/ovarian</td>
<td>Comparison groups: None</td>
</tr>
<tr>
<td></td>
<td>Format: Touch-screen computer application linked to printer</td>
<td>Setting: Primary care</td>
<td>Sample size: Group A = 215</td>
<td>Power calculation: NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Format: Touch-screen computer application linked to printer</td>
<td>Sample size: Group B = 124</td>
<td>Applicability: Primary care</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Practice-related outcomes:
Timing unclear, ‘post-intervention’
1. Proportion of physicians making ‘correct’ referral decision for ≥ 5/6 vignettes
 - Group A: 111/140 (79%)
 - Group B: 100/124 (81%)
 - Group C: 63/162 (63%)
 Overall p<0.001 (one way ANOVA); group A vs C – p<0.001 (χ^2); group B vs C, p<0.001 (χ^2); group A vs B, p=0.45 (χ^2)
2. Confidence scores in four aspects of managing patients with family history of cancer, 4-point Likert scale.
 - Mean (SD) overall confidence scores, possible scores 0-4:
 - Group A: 2.3 (1.0); Group B: 2.0 (1.1); Group C: 1.5 (1.0) P<0.001
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Tool, Purpose, Content and Format of tool, Underlying Guidelines/Models</th>
<th>Study Population, Cancer Type, Clinical Setting, Applicability</th>
<th>Study Design, Comparison Group(s) or Interventions, Sample Size</th>
<th>Key Results Relating to Clinical Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson55 2005 Wilson56 2006 UK</td>
<td>Tool: Multifaceted decision aid Purpose: Familial cancer risk management Content: Targeted family history questions; risk assessment module; background information on cancer genetics; printer-friendly patient information leaflets; weblinks; email link to cancer genetics service; automated individualized referral letter Format: Physician-oriented personal computer package. Implemented with offer of education session Underlying guidelines: Scottish Cancer Group Cancer Genetics Sub-Group. Cancer genetics services in Scotland. Guidance to support the implementation of genetics services for breast, ovarian and colorectal cancer predisposition. Edinburgh: Scottish Executive Health Department, 2001</td>
<td>Study population: Women consulting family physicians with queries about familial breast cancer; family physicians Cancer type: Breast, ovarian, colorectal Setting: Family practice Applicability: Family practice</td>
<td>Design: Cluster randomized controlled trial Comparison groups: Scottish referral guidelines mailed by Department of Health Sample size: Physicians Intervention group - Responders pre-intervention n=179; Responders post-intervention n=151 Control group – Responders pre-intervention n=93; Responders post-intervention n=92 Patients Intervention group – Responders pre-intervention n=133; Responders post-intervention n=75 Control group – Responders pre-intervention n=92; Responders post-intervention n=52</td>
<td>Practice-related outcomes: Family physicians 1: Self-reported physician confidence, 4-point scale Patients • very confident or confident taking FH – intervention group, 91/151 (60%), control group 56/92 (61%); p=0.93 (χ^2) • very confident or confident knowing who to refer – intervention group 14/151 (40%), control group 30/91 (33%); p=0.27 (χ^2) • very confident or confident reassuring low risk – intervention group 85/151 (57%), control group 48/92 (52%); p=0.46 (χ^2) • very confident or confident able to answer questions – intervention group 35/151 (23%), control group 20/92 (22%); p=0.77 (χ^2) 2: Genetic risk of referred patients • Proportion of referred patients assessed as elevated genetic risk Intervention group 14/29 (48%), control group 22/34 (65%), NS (reported as risk ratio) N.B. Baseline differences between groups 3: Patients’ breast cancer beliefs</td>
</tr>
</tbody>
</table>
Evidence Table 3: Study characteristics for studies evaluating risk assessment tools (RATS) (continued)

<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Tool, Purpose, Content and Format of tool, Underlying Guidelines/Models</th>
<th>Study Population, Cancer Type, Clinical Setting, Applicability</th>
<th>Study Design, Comparison Group(s) or Interventions, Sample Size</th>
<th>Key Results Relating to Clinical Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Power calculation: 168 interventions, 84 control practices</td>
<td>Proportion of referred patients agreeing with ‘incorrect’ causal statement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>required (2:1 allocation ratio) to detect absolute difference of 20% in physicians responding very confident or confident in attitude items, 80% power, α = 0.05, ICC 0.05</td>
<td>• ‘Stress always increases your risk’ intervention group 17/74 (23%), control group 5/22 (23%); p=0.98 (χ²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• ‘Having one close relative with breast cancer always increases your risk’ – intervention group 66/75 (88%), control group 20/22 (91%); p=0.71 (χ²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• ‘Minor injury always increases your risk’ – intervention group 15/75 (20%), control group 5/22 (23%); p=0.78 (χ²).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Other outcomes measured: N/A</td>
</tr>
</tbody>
</table>

Other outcomes measured: N/A

52. Gramling R, Duffy C, David S. Does providing hereditary breast cancer risk assessment support to practicing physicians decrease the likelihood of them discussing such risk with their patients? Genet Med 2004;6(6):542

Appendix D. List of Excluded Studies

Exclusion: Not about accuracy and tool not standardized

Exclusion: Does not apply to any of the research questions

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study Type

Exclusion: Guideline or consensus statement

Exclusion: No data reported

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study Type

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study Type

Exclusion: No data reported

Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Only a mutation or prediction

Exclusion: Not about accuracy and tool not standardized

Exclusion: Only a mutation or prediction

Bartlett S. Predictive model for hereditary colorectal cancer. Lancet Oncol 2006;7(8):624
Exclusion: Narrative only

Exclusion: Only a mutation or prediction

Exclusion: Study type

Bennett C, Burton H, Farmdon P. Competences, education and support for new roles in cancer genetics services: Outcomes from the cancer genetics pilot projects. Fam Cancer 2007;6(2):171-180. Exclusion: Not about accuracy and tool not standardized

Bodmer D, Lichtenberg MJL, Van Der et al. Optimal selection for BRCA1 and BRCA2 mutation testing using a combination of ‘easy to apply’ probability models. Br J Cancer 2006;95(6):757-762. Exclusion: Guideline or consensus statement

Camp NJ, Slattery ML. Classification tree analysis: a statistical tool to investigate risk factor interactions with an example for colon cancer (United States). Cancer Causes Control. 2002;13(9):813-823. Exclusion: Not about accuracy and tool not standardized

Exclusion: Only a mutation or prediction

Exclusion: Guideline or consensus statement

Church J M. A scoring system for the strength of a family history of colorectal cancer. Dis Colon Rectum 2005;48(5):889-896. Exclusion: Does not apply to any of the research questions

Clough GR. Taking control of family history screening. Synergy 2003;15-7. Exclusion: No data reported

Cortesi L, Turchetti D, Marchi I et al. Breast cancer screening in women at increased risk according to different family histories: an update of the Modena Study Group experience. BMC Cancer 2006;6:210 Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study Type

Exclusion: Does not apply to any of the research questions

Exclusion: Does not apply to any of the research questions

Exclusion: Not about accuracy and tool not standardized

Exclusion: Guideline or consensus statement

Exclusion: Presents only aggregate data

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study Type

Exclusion: No data reported

Exclusion: Study Type

Exclusion: Not about accuracy and tool not standardized

Exclusion: Narrative only

Exclusion: No data reported

Exclusion: Not about accuracy and tool not standardized

Exclusion: Guideline or consensus statement

Exclusion: Only a mutation or prediction
Exclusion: No data reported

Exclusion: Guideline or consensus statement

Exclusion: Only a mutation or prediction

Exclusion: Not about accuracy and tool not standardized

Exclusion: No data reported

Evans S, Lynch HT, Fusaro RM. Clinical results using informatics to evaluate hereditary cancer risk. Proceedings - the Annual Symposium on Computer Applications in Medical Care 1995;834-8
Exclusion: Presents only aggregate data

Exclusion: Study Type

Exclusion: Guideline or consensus statement

Exclusion: Study Type

Exclusion: Not about accuracy and tool not standardized

Exclusion: No cancer of interest

Exclusion: Not about accuracy and tool not standardized

Exclusion: No data reported

Exclusion: Study type

Exclusion: Study Type

Exclusion: Only a mutation or prediction

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study Type

Exclusion: Study Type

Exclusion: Study Type

Exclusion: Does not apply to any of the research questions

Exclusion: No cancer of interest

Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Does not apply to any of the research questions

Jacobs LA. Author reexamines literature on genetics and hereditary nonpolyposis colon cancer. Oncol Nurs Forum 1998;25(6):975

Exclusion: Narrative only

Exclusion: Not about accuracy and tool not standardized

Exclusion: Does not apply to any of the research questions

Exclusion: No data reported

Exclusion: Presents only aggregate data

Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: No data reported

Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study type

Exclusion: Study Type

Exclusion: Study type

Exclusion: Narrative only

Exclusion: Study type

Loader S, Shields C, Levenkron JC et al. Patient vs. physician as the target of educational outreach about screening for an inherited susceptibility to colorectal cancer. Genet Test 2002;6(4):281-290. Exclusion: Not about accuracy and tool not standardized

Mayer DK. Commentary on validation of a breast cancer risk assessment model in women with a positive family history. ONS Nursing Scan in Oncology 1994;3(5):5 Exclusion: Narrative only

Mayer DK. Commentary on validation of the Gail et al. model for predicting individual breast cancer risk. ONS Nursing Scan in Oncology 1994;3(5):5-6. Exclusion: Narrative only

McCann S, MacAuley D. Management of familial breast and ovarian cancer cases. Br J Gen Pract 2002;52(474):57 Exclusion: No data reported

Exclusion: Not about accuracy and tool not standardized

Exclusion: Only a mutation or prediction

Exclusion: Only a mutation or prediction

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study Type

Exclusion: Study Type

Exclusion: No cancer of interest

Exclusion: Not about accuracy and tool not standardized

O’Riordan MM. Identifying patients at low risk of bowel cancer: personal or familial risk factors need to be mentioned. BMJ 2003;327(7419):871-872.
Exclusion: No data reported

Exclusion: Narrative only

Exclusion: Guideline or consensus statement

Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Only a mutation or prediction

Exclusion: Study Type

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study Type

Exclusion: Narrative only

Exclusion: Study Type

Rajkumar GN, Small DR, Conn IG. Computerised triage in a prostate assessment clinic. Prostate Cancer Prostatic Dis 2004;7(2):118-121. Exclusion: Not about accuracy and tool not standardized

Rodriguez-Bigas M A. Genetic testing is important in families with a history suggestive of hereditary nonpolyposis colorectal cancer even if the Amsterdam criteria are not fulfilled. Br J Surg 1997;84(7):1027-1028. Exclusion: No data reported

Rose PW, Suchard MA. Screening people with a family history of cancer. Taking a family history in primary care is important. BMJ 1997;315(7118):1306 Exclusion: No data reported

Exclusion: Guideline or consensus statement

Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Only a mutation or prediction

Exclusion: Not about accuracy and tool not standardized

Exclusion: Does not apply to any of the research questions

Exclusion: Presents only aggregate data

Exclusion: Only a mutation or prediction

Exclusion: Not about accuracy and tool not standardized

Exclusion: Guideline or consensus statement

Exclusion: No data reported

Exclusion: Study Type

Exclusion: Study Type

Exclusion: Guideline or consensus statement

Exclusion: Does not apply to any of the research questions

Exclusion: Guideline or consensus statement

Exclusion: Not about accuracy and tool not standardized

Exclusion: Narrative only

Exclusion: Does not apply to any of the research questions
Exclusion: Narrative only

Tudiver F, Guibert R, Haggerty J et al. What influences family physicians' cancer screening decisions when practice guidelines are unclear or conflicting?. J Fam Pract 2002;51(9):760
Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study Type

Exclusion: Study Type

Exclusion: Guideline or consensus statement

Exclusion: Guideline or consensus statement

Exclusion: Not about accuracy and tool not standardized

Exclusion: No data reported

Exclusion: Only a mutation or prediction

Exclusion: Not about accuracy and tool not standardized

Exclusion: No data reported

Exclusion: Study type

Exclusion: Study Type

Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study Type

Exclusion: Study Type

Exclusion: Not about accuracy and tool not standardized

Exclusion: Study type

Exclusion: Not about accuracy and tool not standardized
Exclusion: Not about accuracy and tool not standardized

Exclusion: Not about accuracy and tool not standardized

Exclusion: Does not apply to any of the research questions

Exclusion: Study Type

Exclusion: Only a mutation or prediction

Exclusion: Study Type

Exclusion: Study type

Exclusion: Only a mutation or prediction

Exclusion: Not about accuracy and tool not standardized

Exclusion: No data reported
Appendix E. Technical Expert Panel and Peer Reviewers

Task Order Officer

Gurvaneet Randhawa, M.D., M.P.H.
Center for Outcomes and Evidence (COE)
Agency for Healthcare Research and Quality
Rockville, Maryland USA

Partners From CDC

Ralph J. Coates, Ph.D.
Associate Director for Science, Division of Cancer Prevention and Control
National Center for Chronic Disease Prevention and Health Promotion
Centers for Disease Control and Prevention
Atlanta, Georgia USA

Paula W. Yoon, Sc.D., M.P.H.
National Office of Public Health Genomics
Centers for Disease Prevention and Control
Atlanta, Georgia USA

Technical Expert Panel

Dejana Braithwaite, Ph.D., M.Sc.
Carol Franck Buck Breast Care Center
University of California Comprehensive Cancer Center
San Francisco, California USA

Gareth Evans, M.B., B.S., M.D., F.R.C.P.
Professor in Medical Genetics and Cancer Epidemiology
Department of Clinical Genetics,
St. Mary's Hospital, Whitworth Park
Manchester, UK

Caryl J. Heaton, D.O.
Associate Professor and Vice-Chair of Family Medicine
New Jersey Medical School, University of Medicine & Dentistry of New Jersey
Newark, New Jersey USA
Lisa Madlensky, Ph.D.
Assistant Professor, Family and Preventive Medicine
Moores Cancer Center
University of California, San Diego Medical Center
La Jolla, California USA

Harvey J. Murff, M.D., M.P.H.
Assistant Professor of Medicine
Vanderbilt Epidemiology Center
Vanderbilt University Medical Center
Nashville, Tennessee USA

Suzanne O'Neill, Ph.D., C.G.C.
Clinical Researcher and Genetic Counselor
Evanston Northwestern Healthcare Center for Medical Genetics
Research Assistant Professor, Northwestern University
Feinberg School of Medicine
Evanston, Illinois USA

Peer Reviewers of the Report

Louise Acheson, M.D., M.S.
Professor of Family Medicine, Oncology, and Reproductive Biology
Case Western Reserve University
Cleveland, Ohio USA

Joann A. Boughman, Ph.D.
Executive Vice President
American Society of Human Genetics
Bethesda, Maryland USA

Dejana Braithwaite, Ph.D., M.Sc.
Carol Franck Buck Breast Care Center
University of California Comprehensive Cancer Center
San Francisco, California USA

Kathleen A. Calzone, R.N., M.S.N., A.P.N.G.
National Cancer Institute
Center for Cancer Research, Genetics Branch
Bethesda, Maryland USA

Gareth Evans, M.B., B.S., M.D., F.R.C.P.
Professor in Medical Genetics and Cancer Epidemiology
Department of Clinical Genetics,
St. Mary's Hospital, Whitworth Park
Manchester, UK
W. Greg Feero, M.D., Ph.D.
Senior Advisor to the Director for Genomic Medicine
National Human Genome Research Institute
Bethesda, Maryland USA

Jonathon Gray, M.B.Ch.B., M.R.C.P., Ph.D., F.R.C.P.
Director, Wales Centre for Health
Cardiff, Wales UK

Joy Larsen Hadle, M.S., C.G.C.
Genetic Counselor, Hubert H. Humphrey Cancer Center
Robbinsdale, Minnesota USA
On behalf of the National Society of Genetic Counselors

Lisa Madlensky, Ph.D.
Assistant Professor, Family and Preventive Medicine, Moores Cancer Center
University of California, San Diego Medical Center
La Jolla, California USA

Phuong Mai, M.D.
National Cancer Institute
Division of Cancer Epidemiology and Genetics
Rockville, Maryland USA

Paul Metzer, M.D., Ph.D.
Cancer Genetics Branch, Section of Molecular Cytogenetics
National Human Genome Research Institute
Bethesda, Maryland USA

Harvey J. Murff, M.D., M.P.H.
Assistant Professor of Medicine
Vanderbilt Epidemiology Center
Vanderbilt University Medical Center
Nashville, Tennessee USA

Suzanne O'Neill, Ph.D., C.G.C.
Clinical Researcher and Genetic Counselor
Evanston Northwestern Healthcare Center for Medical Genetics
Research Assistant Professor, Northwestern University, Feinberg School of Medicine
Evanston, Illinois USA

Nancie Petrucelli, M.S., C.G.C.
Cancer Genetic Counseling Service
Barbara Ann Karmanos Cancer Institute
Detroit, Michigan USA
On behalf of the National Society of Genetic Counselors
Mark E. Robson, M.D.
Associate Attending Physician
Memorial Sloan-Kettering Cancer Center
New York, New York USA
On behalf of the American Society of Clinical Oncology

Maren T. Scheuner, M.D., M.P.H., F.A.C.M.G.
RAND Corporation
Department of Social & Health Sciences
Santa Monica, California USA

Eila Watson, Ph.D.
School of Health and Social Care
Oxford Brookes University
Oxford UK